Sb2Se3 film with grain size over 10 μm toward X-ray detection

Chong WANG, Xinyuan DU, Siyu WANG, Hui DENG, Chao CHEN, Guangda NIU, Jincong PANG, Kanghua LI, Shuaicheng LU, Xuetian LIN, Haisheng SONG, Jiang TANG

PDF(3157 KB)
PDF(3157 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (3) : 341-351. DOI: 10.1007/s12200-020-1064-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Sb2Se3 film with grain size over 10 μm toward X-ray detection

Author information +
History +

Abstract

Direct X-ray detectors are considered as competitive next-generation X-ray detectors because of their high spatial resolution, high sensitivity, and simple device configuration. However, their potential is largely limited by the imperfections of traditional materials, such as the low crystallization temperature of α-Se and the low atomic numbers of α-Si and α-Se. Here, we report the Sb2Se3 X-ray thin-film detector with a p–n junction structure, which exhibited a sensitivity of 106.3 µC/(Gyair·cm2) and response time of <2.5 ms. This decent performance and the various advantages of Sb2Se3, such as the average atomic number of 40.8 and μτ product (μ is the mobility, and τ is the carrier lifetime) of 1.29 × 10−5 cm2/V, indicate its potential for application in X-ray detection.

Graphical abstract

Keywords

X-ray detector / Sb2Se3 / p–n junction / response speed / grain size

Cite this article

Download citation ▾
Chong WANG, Xinyuan DU, Siyu WANG, Hui DENG, Chao CHEN, Guangda NIU, Jincong PANG, Kanghua LI, Shuaicheng LU, Xuetian LIN, Haisheng SONG, Jiang TANG. Sb2Se3 film with grain size over 10 μm toward X-ray detection. Front. Optoelectron., 2021, 14(3): 341‒351 https://doi.org/10.1007/s12200-020-1064-5

References

[1]
Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y, Park N G. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550(7674): 87–91
CrossRef Pubmed Google scholar
[2]
Chen Q, Wu J, Ou X, Huang B, Almutlaq J, Zhumekenov A A, Guan X, Han S, Liang L, Yi Z, Li J, Xie X, Wang Y, Li Y, Fan D, Teh D B L, All A H, Mohammed O F, Bakr O M, Wu T, Bettinelli M, Yang H, Huang W, Liu X. All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561(7721): 88–93
CrossRef Pubmed Google scholar
[3]
Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin W J, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732
CrossRef Google scholar
[4]
Wei H, Huang J. Halide lead perovskites for ionizing radiation detection. Nature Communications, 2019, 10(1): 1066
CrossRef Pubmed Google scholar
[5]
Yang B, Yin L, Niu G, Yuan J H, Xue K H, Tan Z, Miao X S, Niu M, Du X, Song H, Lifshitz E, Tang J. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Advanced Materials, 2019, 31(44): 1904711
CrossRef Pubmed Google scholar
[6]
Gao L, Yan Q F. Recent advances in lead halide perovskites for radiation detectors. Solar RRL, 2020, 4(2): 1900210
CrossRef Google scholar
[7]
Wei W, Zhang Y, Xu Q, Wei H T, Fang Y J, Wang Q, Deng Y H, Li T, Gruverman A, Cao L, Huang J S. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics, 2017, 11(5): 315–321
CrossRef Google scholar
[8]
Zhuang R Z, Wang X J, Ma W B, Wu Y H, Chen X, Tang L H, Zhu H M, Liu J Y, Wu L L, Zhou W, Liu X, Yang Y. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nature Photonics, 2019, 13(9): 602–608
CrossRef Google scholar
[9]
Huang H Y, Abbaszadeh S. Recent developments of amorphous selenium-based X-ray detectors: a review. IEEE Sensors Journal, 2020, 20(4): 1694–1704
CrossRef Google scholar
[10]
Zhu M, Niu G, Tang J. Elemental Se: fundamentals and its optoelectronic applications. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2019, 7(8): 2199–2206
CrossRef Google scholar
[11]
Jeong D N, Yang J M, Park N G. Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31(15): 152001
CrossRef Pubmed Google scholar
[12]
Cheng X, Yang S, Cao B Q, Tao X T, Chen Z L. Single crystal perovskite solar cells: development and perspectives. Advanced Functional Materials, 2020, 30(4): 1905021
CrossRef Google scholar
[13]
Zeng K, Xue D J, Tang J. Antimony selenide thin-film solar cells. Semiconductor Science and Technology, 2016, 31(6): 063001
CrossRef Google scholar
[14]
Xue D J, Shi H J, Tang J. Recent progress in material study and photovoltaic device of Sb2Se3. Acta Physica Sinica, 2015, 64(3): 038406 (in Chinese)
[15]
Yaffe M J, Rowlands J A. X-ray detectors for digital radiography. Physics in Medicine and Biology, 1997, 42(1): 1–39
CrossRef Pubmed Google scholar
[16]
Kim H K, Cunningham I A, Yin Z, Cho G. On the development of digital radiography detectors: a review. International Journal of Precision Engineering and Manufacturing, 2008, 9(4): 86–100
[17]
Chen C, Zhao Y, Lu S, Li K, Li Y, Yang B, Chen W, Wang L, Li D, Deng H, Yi F, Tang J. Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach. Advanced Energy Materials, 2017, 7(20): 1700866
CrossRef Google scholar
[18]
Deng H, Zeng Y, Ishaq M, Yuan S, Zhang H, Yang X, Hou M, Farooq U, Huang J, Sun K, Webster R, Wu H, Chen Z, Yi F, Song H, Hao X, Tang J. Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells. Advanced Functional Materials, 2019, 29(31): 1901720
CrossRef Google scholar
[19]
Hobson T D C, Hutter O S, Birkett M, Veal T D, Durose K. Growth and characterization of Sb2S3 single crystals for fundamental studies. In: Proceedings of 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). Waikoloa: IEEE, 2018, 0818–0822
[20]
Moy J P. Large area X-ray detectors based on amorphous silicon technology. Thin Solid Films, 1999, 337(1–2): 213–221
CrossRef Google scholar
[21]
Jung N, Alving P L, Busse F, Conrads N, Meulenbrugge H M, Ruetten W, Schiebel U, Weibrecht M, Wieczorek H. Dynamic X-ray imaging system based on an amorphous silicon thin-film array. Physics of Medical Imaging, 1998, 3336: 396–407
CrossRef Google scholar
[22]
Zhao W, Law J, Waechter D, Huang Z, Rowlands J A. Digital radiology using active matrix readout of amorphous selenium: detectors with high voltage protection. Medical Physics, 1998, 25(4): 539–549
CrossRef Pubmed Google scholar
[23]
Zhao W, Rowlands J A. Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency. Medical Physics, 1997, 24(12): 1819–1833
CrossRef Pubmed Google scholar
[24]
Kasap S, Frey J B, Belev G, Tousignant O, Mani H, Laperriere L, Reznik A, Rowlands J A. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Physica Status Solidi (B), 2009, 246(8): 1794–1805
[25]
XCOM. Photon Cross Sections Database: NIST Standard Reference Database 8 (NIST, 2013). Available at physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
[26]
Yakunin S, Dirin D N, Shynkarenko Y, Morad V, Cherniukh I, Nazarenko O, Kreil D, Nauser T, Kovalenko M V. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nature Photonics, 2016, 10(9): 585–589
CrossRef Google scholar
[27]
Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L, Huang J. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 2016, 10(5): 333–339
CrossRef Google scholar
[28]
Ji C M, Wang S S, Wang Y X, Chen H X, Li L N, Sun Z H, Sui Y, Wang S A, Luo J H. 2D hybrid perovskite ferroelectric enables highly sensitive X-ray detection with low driving voltage. Advanced Functional Materials, 2020, 30(5): 1905529
CrossRef Google scholar
[29]
Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9(6): 409–415
CrossRef Google scholar
[30]
Chen C, Bobela D C, Yang Y, Lu S, Zeng K, Ge C, Yang B, Gao L, Zhao Y, Beard M C, Tang J. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Frontiers of Optoelectronics, 2017, 10(1): 18–30
CrossRef Google scholar
[31]
Zhao M, Su J, Zhao Y, Luo P, Wang F, Han W, Li Y, Zu X, Qiao L, Zhai T. Sodium-mediated epitaxial growth of 2D ultrathin Sb2Se3 flakes for broadband photodetection. Advanced Functional Materials, 2020, 30(13): 1909849
CrossRef Google scholar
[32]
Kondrotas R, Zhang J, Wang C, Tang J. Growth mechanism of Sb2Se3 thin films for photovoltaic application by vapor transport deposition. Solar Energy Materials and Solar Cells, 2019, 199: 16–23
CrossRef Google scholar
[33]
Li Z, Liang X, Li G, Liu H, Zhang H, Guo J, Chen J, Shen K, San X, Yu W, Schropp R E I, Mai Y. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nature Communications, 2019, 10(1): 125
CrossRef Pubmed Google scholar
[34]
Yuan C, Jin X, Jiang G, Liu W, Zhu C. Sb2Se3 solar cells prepared with selenized dc-sputtered metallic precursors. Journal of Materials Science Materials in Electronics, 2016, 27(9): 8906–8910
CrossRef Google scholar
[35]
Phillips L J, Savory C N, Hutter O S, Yates P J, Shiel H, Mariotti S, Bowen L, Birkett M, Durose K, Scanlon D O, Major J D. Current enhancement via a TiO2 window layer for CSS Sb2Se3 solar cells: Performance limits and high VOC. IEEE Journal of Photovoltaics, 2019, 9(2): 544–551
CrossRef Google scholar
[36]
Wen X, Chen C, Lu S, Li K, Kondrotas R, Zhao Y, Chen W, Gao L, Wang C, Zhang J, Niu G, Tang J. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nature Communications, 2018, 9(1): 2179
CrossRef Pubmed Google scholar
[37]
Tang R, Zheng Z H, Su Z H, Li X J, Wei Y D, Zhang X H, Fu Y Q, Luo J T, Fan P, Liang G X. Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film. Nano Energy, 2019, 64: 103929
CrossRef Google scholar
[38]
Li K, Chen C, Lu S, Wang C, Wang S, Lu Y, Tang J. Orientation engineering in low-dimensional crystal-structural materials via seed screening Sb2Se3. Advanced Materials, 2019, 31(44): 1903914
CrossRef Google scholar
[39]
Kasap S O. X-ray sensitivity of photoconductors: application to stabilized a-Se. Journal of Physics D, Applied Physics, 2000, 33(21): 2853–2865
CrossRef Google scholar
[40]
Cousins P J, Neuhaus D H, Cotter J E. Experimental verification of the effect of depletion-region modulation on photoconductance lifetime measurements. Journal of Applied Physics, 2004, 95(4): 1854–1858
CrossRef Google scholar
[41]
Li K, Kondrotas R, Chen C, Lu S, Wen X, Li D, Luo J, Zhao Y, Tang J. Improved efficiency by insertion of Zn1−xMgxO through sol-gel method in ZnO/Sb2Se3 solar cell. Solar Energy, 2018, 167: 10–17
CrossRef Google scholar
[42]
Wang C, Lu S, Li S, Wang S, Lin X, Zhang J, Kondrotas R, Li K, Chen C, Tang J. Efficiency improvement of flexible Sb2Se3 solar cells with non-toxic buffer layer via interface engineering. Nano Energy, 2020, 71: 104577
CrossRef Google scholar
[43]
Pan W, Yang B, Niu G, Xue K H, Du X, Yin L, Zhang M, Wu H, Miao X S, Tang J. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Advanced Materials, 2019, 31(44): 1904405
CrossRef Pubmed Google scholar
[44]
Tokuda S, Adachi S, Sato T, Yoshimuta T, Nagata H, Uehara K, Izumi Y, Teranuma O, Yamada S. Experimental evaluation of a novel CdZnTe flat-panel X-ray detector for digital radiography and fluoroscopy. In: Proceedings of SPIE 4320, Medical Imaging 2001: Physics of Medical Imaging. San Diego: SPIE, 2001, 4320: 140–147
[45]
Basiricò L, Ciavatti A, Cramer T, Cosseddu P, Bonfiglio A, Fraboni B. Direct X-ray photoconversion in flexible organic thin film devices operated below 1 V. Nature Communications, 2016, 7(1): 13063
CrossRef Pubmed Google scholar
[46]
Temiño I, Basiricò L, Fratelli I, Tamayo A, Ciavatti A, Mas-Torrent M, Fraboni B. Morphology and mobility as tools to control and unprecedentedly enhance X-ray sensitivity in organic thin-films. Nature Communications, 2020, 11(1): 2136
CrossRef Pubmed Google scholar
[47]
Liang H L, Cui S J, Su R, Guan P F, He Y H, Yang L H, Chen L M, Zhang Y H, Mei Z X, Du X L. Flexible X-ray detectors based on amorphous Ga2O3 thin films. ACS Photonics, 2019, 6(2): 351–359
CrossRef Google scholar
[48]
Yakunin S, Sytnyk M, Kriegner D, Shrestha S, Richter M, Matt G J, Azimi H, Brabec C J, Stangl J, Kovalenko M V, Heiss W. Detection of X-ray photons by solution-processed lead halide perovskite. Nature Photonics, 2015, 9(7): 444–449
CrossRef Pubmed Google scholar
[49]
Tsai H, Liu F, Shrestha S, Fernando K, Tretiak S, Scott B, Vo D T, Strzalka J, Nie W. A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Science Advances, 2020, 6(15): eaay0815
CrossRef Pubmed Google scholar
[50]
Basiricò L, Senanayak S P, Ciavatti A, Abdi-Jalebi MFraboni BSirringhaus H. Detection of X-rays by solution-processed cesium-containing mixed triple cation perovskite thin films. Advanced Functional Materials, 2019, 29(34): 1902346
CrossRef Google scholar
[51]
Mescher H, Schackmar F, Eggers H, Abzieher T, Zuber M, Hamann E, Baumbach T, Richards B S, Hernandez-Sosa G, Paetzold U W, Lemmer U. Flexible inkjet-printed triple cation perovskite X-ray detectors. ACS Applied Materials & Interfaces, 2020, 12(13): 15774–15784
CrossRef Pubmed Google scholar
[52]
Budil K S, Perry T S, Bell P M, Hares J D, Miller P L, Peyser T A, Wallace R, Louis H, Smith D E. The flexible X-ray imager. Review of Scientific Instruments, 1996, 67(2): 485–488
CrossRef Google scholar
[53]
Kuo T T, Wu C M, Lu H H, Chan I, Wang K, Leou K C. Flexible X-ray imaging detector based on direct conversion in amorphous selenium. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 2014, 32(4): 041507
CrossRef Google scholar
[54]
Sun H, Zhao B, Yang D, Wangyang P, Gao X, Zhu X. Flexible X-ray detector based on sliced lead iodide crystal. Phyica Status Solidi (RRL)-Rapid Research Letters, 2017, 11(2): 1600397

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61725401 and 61904058), the National Key R&D Program of China (No. 2016YFA0204000), the Innovation Fund of Wuhan National Laboratory for Optoelectronics (WNLO), the National Postdoctoral Program for Innovative Talent (No. BX20190127), and China Postdoctoral Science Foundation Project (No. 2019M662623). The authors thank the Analytical and Testing Center of Huazhong University of Science and Technology (HUST) and the facility support of the Center for Nanoscale Characterization and Devices, WNLO-HUST.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(3157 KB)

Accesses

Citations

Detail

Sections
Recommended

/