Sb2Se3 film with grain size over 10 μm toward X-ray detection
Chong WANG, Xinyuan DU, Siyu WANG, Hui DENG, Chao CHEN, Guangda NIU, Jincong PANG, Kanghua LI, Shuaicheng LU, Xuetian LIN, Haisheng SONG, Jiang TANG
Sb2Se3 film with grain size over 10 μm toward X-ray detection
Direct X-ray detectors are considered as competitive next-generation X-ray detectors because of their high spatial resolution, high sensitivity, and simple device configuration. However, their potential is largely limited by the imperfections of traditional materials, such as the low crystallization temperature of α-Se and the low atomic numbers of α-Si and α-Se. Here, we report the Sb2Se3 X-ray thin-film detector with a p–n junction structure, which exhibited a sensitivity of 106.3 µC/(Gyair·cm2) and response time of <2.5 ms. This decent performance and the various advantages of Sb2Se3, such as the average atomic number of 40.8 and μτ product (μ is the mobility, and τ is the carrier lifetime) of 1.29 × 10−5 cm2/V, indicate its potential for application in X-ray detection.
X-ray detector / Sb2Se3 / p–n junction / response speed / grain size
[1] |
Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y, Park N G. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550(7674): 87–91
CrossRef
Pubmed
Google scholar
|
[2] |
Chen Q, Wu J, Ou X, Huang B, Almutlaq J, Zhumekenov A A, Guan X, Han S, Liang L, Yi Z, Li J, Xie X, Wang Y, Li Y, Fan D, Teh D B L, All A H, Mohammed O F, Bakr O M, Wu T, Bettinelli M, Yang H, Huang W, Liu X. All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561(7721): 88–93
CrossRef
Pubmed
Google scholar
|
[3] |
Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin W J, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732
CrossRef
Google scholar
|
[4] |
Wei H, Huang J. Halide lead perovskites for ionizing radiation detection. Nature Communications, 2019, 10(1): 1066
CrossRef
Pubmed
Google scholar
|
[5] |
Yang B, Yin L, Niu G, Yuan J H, Xue K H, Tan Z, Miao X S, Niu M, Du X, Song H, Lifshitz E, Tang J. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Advanced Materials, 2019, 31(44): 1904711
CrossRef
Pubmed
Google scholar
|
[6] |
Gao L, Yan Q F. Recent advances in lead halide perovskites for radiation detectors. Solar RRL, 2020, 4(2): 1900210
CrossRef
Google scholar
|
[7] |
Wei W, Zhang Y, Xu Q, Wei H T, Fang Y J, Wang Q, Deng Y H, Li T, Gruverman A, Cao L, Huang J S. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics, 2017, 11(5): 315–321
CrossRef
Google scholar
|
[8] |
Zhuang R Z, Wang X J, Ma W B, Wu Y H, Chen X, Tang L H, Zhu H M, Liu J Y, Wu L L, Zhou W, Liu X, Yang Y. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nature Photonics, 2019, 13(9): 602–608
CrossRef
Google scholar
|
[9] |
Huang H Y, Abbaszadeh S. Recent developments of amorphous selenium-based X-ray detectors: a review. IEEE Sensors Journal, 2020, 20(4): 1694–1704
CrossRef
Google scholar
|
[10] |
Zhu M, Niu G, Tang J. Elemental Se: fundamentals and its optoelectronic applications. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2019, 7(8): 2199–2206
CrossRef
Google scholar
|
[11] |
Jeong D N, Yang J M, Park N G. Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31(15): 152001
CrossRef
Pubmed
Google scholar
|
[12] |
Cheng X, Yang S, Cao B Q, Tao X T, Chen Z L. Single crystal perovskite solar cells: development and perspectives. Advanced Functional Materials, 2020, 30(4): 1905021
CrossRef
Google scholar
|
[13] |
Zeng K, Xue D J, Tang J. Antimony selenide thin-film solar cells. Semiconductor Science and Technology, 2016, 31(6): 063001
CrossRef
Google scholar
|
[14] |
Xue D J, Shi H J, Tang J. Recent progress in material study and photovoltaic device of Sb2Se3. Acta Physica Sinica, 2015, 64(3): 038406 (in Chinese)
|
[15] |
Yaffe M J, Rowlands J A. X-ray detectors for digital radiography. Physics in Medicine and Biology, 1997, 42(1): 1–39
CrossRef
Pubmed
Google scholar
|
[16] |
Kim H K, Cunningham I A, Yin Z, Cho G. On the development of digital radiography detectors: a review. International Journal of Precision Engineering and Manufacturing, 2008, 9(4): 86–100
|
[17] |
Chen C, Zhao Y, Lu S, Li K, Li Y, Yang B, Chen W, Wang L, Li D, Deng H, Yi F, Tang J. Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach. Advanced Energy Materials, 2017, 7(20): 1700866
CrossRef
Google scholar
|
[18] |
Deng H, Zeng Y, Ishaq M, Yuan S, Zhang H, Yang X, Hou M, Farooq U, Huang J, Sun K, Webster R, Wu H, Chen Z, Yi F, Song H, Hao X, Tang J. Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells. Advanced Functional Materials, 2019, 29(31): 1901720
CrossRef
Google scholar
|
[19] |
Hobson T D C, Hutter O S, Birkett M, Veal T D, Durose K. Growth and characterization of Sb2S3 single crystals for fundamental studies. In: Proceedings of 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). Waikoloa: IEEE, 2018, 0818–0822
|
[20] |
Moy J P. Large area X-ray detectors based on amorphous silicon technology. Thin Solid Films, 1999, 337(1–2): 213–221
CrossRef
Google scholar
|
[21] |
Jung N, Alving P L, Busse F, Conrads N, Meulenbrugge H M, Ruetten W, Schiebel U, Weibrecht M, Wieczorek H. Dynamic X-ray imaging system based on an amorphous silicon thin-film array. Physics of Medical Imaging, 1998, 3336: 396–407
CrossRef
Google scholar
|
[22] |
Zhao W, Law J, Waechter D, Huang Z, Rowlands J A. Digital radiology using active matrix readout of amorphous selenium: detectors with high voltage protection. Medical Physics, 1998, 25(4): 539–549
CrossRef
Pubmed
Google scholar
|
[23] |
Zhao W, Rowlands J A. Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency. Medical Physics, 1997, 24(12): 1819–1833
CrossRef
Pubmed
Google scholar
|
[24] |
Kasap S, Frey J B, Belev G, Tousignant O, Mani H, Laperriere L, Reznik A, Rowlands J A. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Physica Status Solidi (B), 2009, 246(8): 1794–1805
|
[25] |
XCOM. Photon Cross Sections Database: NIST Standard Reference Database 8 (NIST, 2013). Available at physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
|
[26] |
Yakunin S, Dirin D N, Shynkarenko Y, Morad V, Cherniukh I, Nazarenko O, Kreil D, Nauser T, Kovalenko M V. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nature Photonics, 2016, 10(9): 585–589
CrossRef
Google scholar
|
[27] |
Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L, Huang J. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 2016, 10(5): 333–339
CrossRef
Google scholar
|
[28] |
Ji C M, Wang S S, Wang Y X, Chen H X, Li L N, Sun Z H, Sui Y, Wang S A, Luo J H. 2D hybrid perovskite ferroelectric enables highly sensitive X-ray detection with low driving voltage. Advanced Functional Materials, 2020, 30(5): 1905529
CrossRef
Google scholar
|
[29] |
Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9(6): 409–415
CrossRef
Google scholar
|
[30] |
Chen C, Bobela D C, Yang Y, Lu S, Zeng K, Ge C, Yang B, Gao L, Zhao Y, Beard M C, Tang J. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Frontiers of Optoelectronics, 2017, 10(1): 18–30
CrossRef
Google scholar
|
[31] |
Zhao M, Su J, Zhao Y, Luo P, Wang F, Han W, Li Y, Zu X, Qiao L, Zhai T. Sodium-mediated epitaxial growth of 2D ultrathin Sb2Se3 flakes for broadband photodetection. Advanced Functional Materials, 2020, 30(13): 1909849
CrossRef
Google scholar
|
[32] |
Kondrotas R, Zhang J, Wang C, Tang J. Growth mechanism of Sb2Se3 thin films for photovoltaic application by vapor transport deposition. Solar Energy Materials and Solar Cells, 2019, 199: 16–23
CrossRef
Google scholar
|
[33] |
Li Z, Liang X, Li G, Liu H, Zhang H, Guo J, Chen J, Shen K, San X, Yu W, Schropp R E I, Mai Y. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nature Communications, 2019, 10(1): 125
CrossRef
Pubmed
Google scholar
|
[34] |
Yuan C, Jin X, Jiang G, Liu W, Zhu C. Sb2Se3 solar cells prepared with selenized dc-sputtered metallic precursors. Journal of Materials Science Materials in Electronics, 2016, 27(9): 8906–8910
CrossRef
Google scholar
|
[35] |
Phillips L J, Savory C N, Hutter O S, Yates P J, Shiel H, Mariotti S, Bowen L, Birkett M, Durose K, Scanlon D O, Major J D. Current enhancement via a TiO2 window layer for CSS Sb2Se3 solar cells: Performance limits and high VOC. IEEE Journal of Photovoltaics, 2019, 9(2): 544–551
CrossRef
Google scholar
|
[36] |
Wen X, Chen C, Lu S, Li K, Kondrotas R, Zhao Y, Chen W, Gao L, Wang C, Zhang J, Niu G, Tang J. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nature Communications, 2018, 9(1): 2179
CrossRef
Pubmed
Google scholar
|
[37] |
Tang R, Zheng Z H, Su Z H, Li X J, Wei Y D, Zhang X H, Fu Y Q, Luo J T, Fan P, Liang G X. Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film. Nano Energy, 2019, 64: 103929
CrossRef
Google scholar
|
[38] |
Li K, Chen C, Lu S, Wang C, Wang S, Lu Y, Tang J. Orientation engineering in low-dimensional crystal-structural materials via seed screening Sb2Se3. Advanced Materials, 2019, 31(44): 1903914
CrossRef
Google scholar
|
[39] |
Kasap S O. X-ray sensitivity of photoconductors: application to stabilized a-Se. Journal of Physics D, Applied Physics, 2000, 33(21): 2853–2865
CrossRef
Google scholar
|
[40] |
Cousins P J, Neuhaus D H, Cotter J E. Experimental verification of the effect of depletion-region modulation on photoconductance lifetime measurements. Journal of Applied Physics, 2004, 95(4): 1854–1858
CrossRef
Google scholar
|
[41] |
Li K, Kondrotas R, Chen C, Lu S, Wen X, Li D, Luo J, Zhao Y, Tang J. Improved efficiency by insertion of Zn1−xMgxO through sol-gel method in ZnO/Sb2Se3 solar cell. Solar Energy, 2018, 167: 10–17
CrossRef
Google scholar
|
[42] |
Wang C, Lu S, Li S, Wang S, Lin X, Zhang J, Kondrotas R, Li K, Chen C, Tang J. Efficiency improvement of flexible Sb2Se3 solar cells with non-toxic buffer layer via interface engineering. Nano Energy, 2020, 71: 104577
CrossRef
Google scholar
|
[43] |
Pan W, Yang B, Niu G, Xue K H, Du X, Yin L, Zhang M, Wu H, Miao X S, Tang J. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Advanced Materials, 2019, 31(44): 1904405
CrossRef
Pubmed
Google scholar
|
[44] |
Tokuda S, Adachi S, Sato T, Yoshimuta T, Nagata H, Uehara K, Izumi Y, Teranuma O, Yamada S. Experimental evaluation of a novel CdZnTe flat-panel X-ray detector for digital radiography and fluoroscopy. In: Proceedings of SPIE 4320, Medical Imaging 2001: Physics of Medical Imaging. San Diego: SPIE, 2001, 4320: 140–147
|
[45] |
Basiricò L, Ciavatti A, Cramer T, Cosseddu P, Bonfiglio A, Fraboni B. Direct X-ray photoconversion in flexible organic thin film devices operated below 1 V. Nature Communications, 2016, 7(1): 13063
CrossRef
Pubmed
Google scholar
|
[46] |
Temiño I, Basiricò L, Fratelli I, Tamayo A, Ciavatti A, Mas-Torrent M, Fraboni B. Morphology and mobility as tools to control and unprecedentedly enhance X-ray sensitivity in organic thin-films. Nature Communications, 2020, 11(1): 2136
CrossRef
Pubmed
Google scholar
|
[47] |
Liang H L, Cui S J, Su R, Guan P F, He Y H, Yang L H, Chen L M, Zhang Y H, Mei Z X, Du X L. Flexible X-ray detectors based on amorphous Ga2O3 thin films. ACS Photonics, 2019, 6(2): 351–359
CrossRef
Google scholar
|
[48] |
Yakunin S, Sytnyk M, Kriegner D, Shrestha S, Richter M, Matt G J, Azimi H, Brabec C J, Stangl J, Kovalenko M V, Heiss W. Detection of X-ray photons by solution-processed lead halide perovskite. Nature Photonics, 2015, 9(7): 444–449
CrossRef
Pubmed
Google scholar
|
[49] |
Tsai H, Liu F, Shrestha S, Fernando K, Tretiak S, Scott B, Vo D T, Strzalka J, Nie W. A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Science Advances, 2020, 6(15): eaay0815
CrossRef
Pubmed
Google scholar
|
[50] |
Basiricò L, Senanayak S P, Ciavatti A, Abdi-Jalebi MFraboni BSirringhaus H. Detection of X-rays by solution-processed cesium-containing mixed triple cation perovskite thin films. Advanced Functional Materials, 2019, 29(34): 1902346
CrossRef
Google scholar
|
[51] |
Mescher H, Schackmar F, Eggers H, Abzieher T, Zuber M, Hamann E, Baumbach T, Richards B S, Hernandez-Sosa G, Paetzold U W, Lemmer U. Flexible inkjet-printed triple cation perovskite X-ray detectors. ACS Applied Materials & Interfaces, 2020, 12(13): 15774–15784
CrossRef
Pubmed
Google scholar
|
[52] |
Budil K S, Perry T S, Bell P M, Hares J D, Miller P L, Peyser T A, Wallace R, Louis H, Smith D E. The flexible X-ray imager. Review of Scientific Instruments, 1996, 67(2): 485–488
CrossRef
Google scholar
|
[53] |
Kuo T T, Wu C M, Lu H H, Chan I, Wang K, Leou K C. Flexible X-ray imaging detector based on direct conversion in amorphous selenium. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 2014, 32(4): 041507
CrossRef
Google scholar
|
[54] |
Sun H, Zhao B, Yang D, Wangyang P, Gao X, Zhu X. Flexible X-ray detector based on sliced lead iodide crystal. Phyica Status Solidi (RRL)-Rapid Research Letters, 2017, 11(2): 1600397
|
/
〈 | 〉 |