Performance of integrated optical switches based on 2D materials and beyond

Yuhan YAO, Zhao CHENG, Jianji DONG, Xinliang ZHANG

PDF(695 KB)
PDF(695 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (2) : 129-138. DOI: 10.1007/s12200-020-1058-3
REVIEW ARTICLE
REVIEW ARTICLE

Performance of integrated optical switches based on 2D materials and beyond

Author information +
History +

Abstract

Applications of optical switches, such as signal routing and data-intensive computing, are critical in optical interconnects and optical computing. Integrated optical switches enabled by two-dimensional (2D) materials and beyond, such as graphene and black phosphorus, have demonstrated many advantages in terms of speed and energy consumption compared to their conventional silicon-based counterparts. Here we review the state-of-the-art of optical switches enabled by 2D materials and beyond and organize them into several tables. The performance tables and future projections show the frontiers of optical switches fabricated from 2D materials and beyond, providing researchers with an overview of this field and enabling them to identify existing challenges and predict promising research directions.

Graphical abstract

Keywords

two-dimensional (2D) materials / integrated optics / optical switches / performance table

Cite this article

Download citation ▾
Yuhan YAO, Zhao CHENG, Jianji DONG, Xinliang ZHANG. Performance of integrated optical switches based on 2D materials and beyond. Front. Optoelectron., 2020, 13(2): 129‒138 https://doi.org/10.1007/s12200-020-1058-3

References

[1]
Cheng Q, Bahadori M, Glick M, Rumley S, Bergman K. Recent advances in optical technologies for data centers: a review. Optica, 2018, 5(11): 1354
CrossRef Google scholar
[2]
Cheng Q, Rumley S, Bahadori M, Bergman K. Photonic switching in high performance datacenters. Optics Express, 2018, 26(12): 16022–16043
CrossRef Pubmed Google scholar
[3]
Geis M W, Spector S J, Williamson R C, Lyszczarz T M. Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photonics Technology Letters, 2004, 16(11): 2514–2516
CrossRef Google scholar
[4]
Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham J E, Krishnamoorthy A V, Asghari M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express, 2010, 18(19): 20298–20304
CrossRef Pubmed Google scholar
[5]
Lee B S, Zhang M, Barbosa F A S, Miller S A, Mohanty A, St-Gelais R, Lipson M. On-chip thermo-optic tuning of suspended microresonators. Optics Express, 2017, 25(11): 12109–12120
CrossRef Pubmed Google scholar
[6]
Li X, Xu H, Xiao X, Li Z, Yu Y, Yu J. Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction. Optics Letters, 2014, 39(4): 751–753
CrossRef Pubmed Google scholar
[7]
Zhao Y, Wang X, Gao D, Dong J, Zhang X. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Frontiers of Optoelectronics, 2019, 12(2): 148–156
CrossRef Google scholar
[8]
Xu Q, Manipatruni S, Schmidt B, Shakya J, Lipson M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Optics Express, 2007, 15(2): 430–436
CrossRef Pubmed Google scholar
[9]
Manipatruni S, Dokania R K, Schmidt B, Sherwood-Droz N, Poitras C B, Apsel A B, Lipson M. Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Optics Letters, 2008, 33(19): 2185–2187
CrossRef Pubmed Google scholar
[10]
Timurdogan E, Sorace-Agaskar C M, Sun J, Shah Hosseini E, Biberman A, Watts M R. An ultralow power athermal silicon modulator. Nature Communications, 2014, 5(1): 4008
CrossRef Pubmed Google scholar
[11]
Ferrari A C, Bonaccorso F, Fal’ko V, Novoselov K S, Roche S, Bøggild P, Borini S, Koppens F H, Palermo V, Pugno N, Garrido J A, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman J N, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider G F, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko A N, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams G M, Hong B H, Ahn J H, Kim J M, Zirath H, van Wees B J, van der Zant H, Occhipinti L, Di Matteo A, Kinloch I A, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil S R, Tannock Q, Löfwander T, Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7(11): 4598–4810
CrossRef Pubmed Google scholar
[12]
Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907
CrossRef Google scholar
[13]
Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238
CrossRef Google scholar
[14]
Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
CrossRef Google scholar
[15]
Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, Van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J. High-speed plasmonic phase modulators. Nature Photonics, 2014, 8(3): 229–233
CrossRef Google scholar
[16]
Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nature Photonics, 2010, 4(5): 297–301
CrossRef Google scholar
[17]
Youngblood N, Chen C, Koester S J, Li M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015, 9(4): 247–252
CrossRef Google scholar
[18]
Datta I, Chae S H, Bhatt G R, Tadayon M A, Li B, Yu Y, Park C, Park J, Cao L, Basov D N, Hone J, Lipson M. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nature Photonics, 2020, 14(4): 256–262
CrossRef Google scholar
[19]
Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520(7545): 69–72
CrossRef Pubmed Google scholar
[20]
Ye Y, Wong Z J, Lu X, Ni X, Zhu H, Chen X, Wang Y, Zhang X. Monolayer excitonic laser. Nature Photonics, 2015, 9(11): 733–737
CrossRef Google scholar
[21]
Yao Y, Xia X, Cheng Z, Wei K, Jiang X, Dong J, Zhang H. All-optical modulator using MXene inkjet-printed microring resonator. IEEE Journal of Selected Topics in Quantum Electronics, 2020, doi:10.1109/JSTQE.2020.2982985
CrossRef Google scholar
[22]
Youngblood N, Li M. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics, 2016, 6(6): 1205–1218
CrossRef Google scholar
[23]
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355
CrossRef Google scholar
[24]
Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F. 2D materials: to graphene and beyond. Nanoscale, 2011, 3(1): 20–30
CrossRef Pubmed Google scholar
[25]
Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520(7549): 656–660
CrossRef Pubmed Google scholar
[26]
Tran V, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B, 2014, 89(23): 235319
CrossRef Google scholar
[27]
Qiao J, Kong X, Hu Z X, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5(1): 4475
CrossRef Pubmed Google scholar
[28]
Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H, Sun Z. Nonlinear optics with 2D layered materials. Advanced Materials, 2018, 30(24): 1705963
CrossRef Pubmed Google scholar
[29]
Li Y, Zhang J, Huang D, Sun H, Fan F, Feng J, Wang Z, Ning C Z. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nature Nanotechnology, 2017, 12(10): 987–992
CrossRef Pubmed Google scholar
[30]
Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805
CrossRef Pubmed Google scholar
[31]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Advanced Materials, 2011, 23(37): 4248–4253
CrossRef Pubmed Google scholar
[32]
Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401
CrossRef Pubmed Google scholar
[33]
Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858
CrossRef Pubmed Google scholar
[34]
Jiang X, Liu S, Liang W, Luo S, He Z, Ge Y, Wang H, Cao R, Zhang F, Wen Q, Li J, Bao Q, Fan D, Zhang H. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T= F, O, or OH). Laser & Photonics Reviews, 2018, 12(2): 1700229
CrossRef Google scholar
[35]
Jiang B, Hao Z, Ji Y, Hou Y, Yi R, Mao D, Gan X, Zhao J. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light, Science & Applications, 2020, 9(1): 63
CrossRef Pubmed Google scholar
[36]
Gu T, Petrone N, McMillan J F, van der Zande A, Yu M, Lo G Q, Kwong D L, Hone J, Wong C W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics, 2012, 6(8): 554–559
CrossRef Google scholar
[37]
Li J, Liu C, Chen H, Guo J, Zhang M, Dai D. Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics, 2020, doi:10.1515/nanoph-2020-0093
CrossRef Google scholar
[38]
Miller D. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE, 2009, 97(7): 1166–1185
CrossRef Google scholar
[39]
Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, Li X, Chen J. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 2016, 24(9): 9295–9307
CrossRef Pubmed Google scholar
[40]
Jia H, Xia Y, Zhang L, Ding J, Fu X, Yang L. Four-port optical switch for fat-tree photonic network-on-chip. Journal of Lightwave Technology, 2017, 35(15): 3237–3241
CrossRef Google scholar
[41]
Lee B G, Dupuis N. Silicon photonic switch fabrics: technology and architecture. Journal of Lightwave Technology, 2019, 37(1): 6–20
CrossRef Google scholar
[42]
Jia H, Zhou T, Zhao Y, Xia Y, Dai J, Zhang L, Ding J, Fu X, Yang L. Six-port optical switch for cluster-mesh photonic network-on-chip. Nanophotonics, 2018, 7(5): 827–835
CrossRef Google scholar
[43]
Zheng D, Doménech J D, Pan W, Zou X, Yan L, Pérez D. Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix. Optics Letters, 2019, 44(11): 2629
CrossRef Google scholar
[44]
Li Z, Zhou L, Lu L, Zhao S, Li D, Chen J. 4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers. Photonics Research, 2016, 4(1): 21
CrossRef Google scholar
[45]
Seok T J, Quack N, Han S, Muller R S, Wu M C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 2016, 3(1): 64
CrossRef Google scholar
[46]
Han S, Seok T J, Quack N, Yoo B W, Wu M C. Large-scale silicon photonic switches with movable directional couplers. Optica, 2015, 2(4): 370
CrossRef Google scholar
[47]
Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R. Large-scale nanophotonic phased array. Nature, 2013, 493(7431): 195–199
CrossRef Pubmed Google scholar
[48]
Yang L, Zhou T, Jia H, Yang S, Ding J, Fu X, Zhang L. General architectures for on-chip optical space and mode switching. Optica, 2018, 5(2): 180
CrossRef Google scholar
[49]
Xiong Y, Priti R B, Liboiron-Ladouceur O. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 2017, 4(9): 1098
CrossRef Google scholar
[50]
Jia H, Zhou T, Zhang L, Ding J, Fu X, Yang L. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Optics Express, 2017, 25(17): 20698–20707
CrossRef Pubmed Google scholar
[51]
Zhou T, Jia H, Ding J, Zhang L, Fu X, Yang L. On-chip broadband silicon thermo-optic 2×2 four-mode optical switch for optical space and local mode switching. Optics Express, 2018, 26(7): 8375–8384
CrossRef Pubmed Google scholar
[52]
Koeber S, Palmer R, Lauermann M, Heni W, Elder D L, Korn D, Woessner M, Alloatti L, Koenig S, Schindler P C, Yu H, Bogaerts W, Dalton L R, Freude W, Leuthold J, Koos C. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light, Science & Applications, 2015, 4(2): e255
CrossRef Google scholar
[53]
Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 2010, 4(7): 477–483
CrossRef Google scholar
[54]
Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 2012, 6(4): 248–252
CrossRef Google scholar
[55]
Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics, 2020, 14(1): 37–43
CrossRef Google scholar
[56]
Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189
CrossRef Google scholar
[57]
Klein M, Badada B H, Binder R, Alfrey A, McKie M, Koehler M R, Mandrus D G, Taniguchi T, Watanabe K, LeRoy B J, Schaibley J R. 2D semiconductor nonlinear plasmonic modulators. Nature Communications, 2019, 10(1): 3264
CrossRef Pubmed Google scholar
[58]
Wang H, Yang N, Chang L, Zhou C, Li S, Deng M, Li Z, Liu Q, Zhang C, Li Z, Wang Y. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research, 2020, 8(4): 468
CrossRef Google scholar
[59]
Chen B, Wu H, Xin C, Dai D, Tong L. Flexible integration of free-standing nanowires into silicon photonics. Nature Communications, 2017, 8(1): 20
CrossRef Pubmed Google scholar
[60]
Yang S, Liu D C, Tan Z L, Liu K, Zhu Z H, Qin S Q. CMOS-compatible WS2-based all-optical modulator. ACS Photonics, 2018, 5(2): 342–346
CrossRef Google scholar
[61]
Yan S, Zhu X, Frandsen L H, Xiao S, Mortensen N A, Dong J, Ding Y. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications, 2017, 8(1): 14411
CrossRef Pubmed Google scholar
[62]
Song Q Q, Chen K X, Hu Z F. Low-power broadband thermo-optic switch with weak polarization dependence using a segmented graphene heater. Journal of Lightwave Technology, 2020, 38(6): 1358–1364
CrossRef Google scholar
[63]
Liu Y, Wang H, Wang S, Wang Y, Wang Y, Guo Z, Xiao S, Yao Y, Song Q, Zhang H, Xu K. Highly efficient silicon photonic microheater based on black arsenic–phosphorus. Advanced Optical Materials, 2020, 8(6): 1901526
CrossRef Google scholar
[64]
Cheng Z, Cao R, Guo J, Yao Y, Wei K, Gao S, Wang Y, Dong J, Zhang H. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, doi:10.1515/nanoph-2019-0510
[65]
Yu L, Yin Y, Shi Y, Dai D, He S. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 2016, 3(2): 159
CrossRef Google scholar
[66]
Yu L, Dai D, He S. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Applied Physics Letters, 2014, 105(25): 251104
CrossRef Google scholar
[67]
Qiu C, Yang Y, Li C, Wang Y, Wu K, Chen J. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Scientific Reports, 2017, 7(1): 17046
CrossRef Pubmed Google scholar
[68]
Gan S, Cheng C, Zhan Y, Huang B, Gan X, Li S, Lin S, Li X, Zhao J, Chen H, Bao Q. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7(47): 20249–20255
CrossRef Pubmed Google scholar
[69]
Xu Z, Qiu C, Yang Y, Zhu Q, Jiang X, Zhang Y, Gao W, Su Y. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Optics Express, 2017, 25(16): 19479–19486
CrossRef Pubmed Google scholar
[70]
Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528
CrossRef Google scholar
[71]
Cheng Z, Zhu X, Galili M, Frandsen L H, Hu H, Xiao S, Dong J, Ding Y, Oxenløwe L K, Zhang X. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 2019, doi:10.1515/nanoph-2019-0381
[72]
Gan X, Shiue R J, Gao Y, Mak K F, Yao X, Li L, Szep A, Walker D Jr, Hone J, Heinz T F, Englund D. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Letters, 2013, 13(2): 691–696
CrossRef Pubmed Google scholar
[73]
Hu Y, Pantouvaki M, Van Campenhout J, Brems S, Asselberghs I, Huyghebaert C, Absil P, Van Thourhout D. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser & Photonics Reviews, 2016, 10(2): 307–316
CrossRef Google scholar
[74]
Phare C T, Daniel Lee Y H, Cardenas J, Lipson M. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics, 2015, 9(8): 511–514
CrossRef Google scholar
[75]
Qiu C, Gao W, Vajtai R, Ajayan P M, Kono J, Xu Q. Efficient modulation of 1.55 mm radiation with gated graphene on a silicon microring resonator. Nano Letters, 2014, 14(12): 6811–6815
CrossRef Pubmed Google scholar
[76]
Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Letters, 2012, 12(3): 1482–1485
CrossRef Pubmed Google scholar
[77]
Gao Y, Shiue R J, Gan X, Li L, Peng C, Meric I, Wang L, Szep A, Walker D Jr, Hone J, Englund D. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001–2005
CrossRef Pubmed Google scholar
[78]
Sorianello V, Midrio M, Contestabile G, Asselberghs I, Van Campenhout J, Huyghebaert C, Goykhman I, Ott A K, Ferrari A C, Romagnoli M. Graphene–silicon phase modulators with gigahertz bandwidth. Nature Photonics, 2018, 12(1): 40–44
CrossRef Google scholar
[79]
Dalir H, Xia Y, Wang Y, Zhang X. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics, 2016, 3(9): 1564–1568
CrossRef Google scholar
[80]
Alloatti L, Palmer R, Diebold S, Pahl K P, Chen B, Dinu R, Fournier M, Fedeli J M, Zwick T, Freude W, Koos C, Leuthold J. 100 GHz silicon–organic hybrid modulator. Light, Science & Applications, 2014, 3(5): e173
CrossRef Google scholar
[81]
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67
CrossRef Pubmed Google scholar
[82]
Miller D A B. Energy consumption in optical modulators for interconnects. Optics Express, 2012, 20(S2 Suppl 2): A293–A308
CrossRef Pubmed Google scholar
[83]
Qiao L, Tang W, Chu T. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Scientific Reports, 2017, 7(1): 42306
CrossRef Pubmed Google scholar
[84]
Reed G T, Mashanovich G, Gardes F Y, Thomson D J. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526
CrossRef Google scholar
[85]
Yan S, Zhu X, Dong J, Ding Y, Xiao S. 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics, 2020, doi:10.1515/nanoph-2020-0074
CrossRef Google scholar
[86]
Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi S I, Oxenløwe L K, Jin K J, Mortensen N A, Xiao S. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale, 2017, 9(40): 15576–15581
CrossRef Pubmed Google scholar
[87]
Ma P, Salamin Y, Baeuerle B, Josten A, Heni W, Emboras A, Leuthold J. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics, 2019, 6(1): 154–161
CrossRef Google scholar
[88]
Ding Y, Cheng Z, Zhu X, Yvind K, Dong J, Galili M, Hu H, Mortensen N A, Xiao S, Oxenløwe L K. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics, 2020, 9(2): 317–325
CrossRef Google scholar
[89]
Ansell D, Radko I P, Han Z, Rodriguez F J, Bozhevolnyi S I, Grigorenko A N. Hybrid graphene plasmonic waveguide modulators. Nature Communications, 2015, 6(1): 8846
CrossRef Pubmed Google scholar
[90]
Emboras A, Hoessbacher C, Haffner C, Heni W, Koch U, Ma P, Fedoryshyn Y, Niegemann J, Hafner C, Leuthold J. Electrically controlled plasmonic switches and modulators. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(4): 276–283
CrossRef Google scholar
[91]
Srinivasan S A, Pantouvaki M, Gupta S, Chen H T, Verheyen P, Lepage G, Roelkens G, Saraswat K, Thourhout D V, Absil P, Campenhout J V. 56 Gb/s germanium waveguide electro-absorption modulator. Journal of Lightwave Technology, 2016, 34(2): 419–424
CrossRef Google scholar
[92]
Chen L, Dong P, Lipson M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Optics Express, 2008, 16(15): 11513–11518
CrossRef Pubmed Google scholar
[93]
Liu J, Camacho-Aguilera R, Bessette J T, Sun X, Wang X, Cai Y, Kimerling L C, Michel J. Ge-on-Si optoelectronics. Thin Solid Films, 2012, 520(8): 3354–3360
CrossRef Google scholar
[94]
Wang Z, Tian B, Pantouvaki M, Guo W, Absil P, Van Campenhout J, Merckling C, Van Thourhout D. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photonics, 2015, 9(12): 837–842
CrossRef Google scholar
[95]
Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567(7748): 323–333
CrossRef Pubmed Google scholar
[96]
Bae S H, Kum H, Kong W, Kim Y, Choi C, Lee B, Lin P, Park Y, Kim J. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nature Materials, 2019, 18(6): 550–560
CrossRef Pubmed Google scholar
[97]
Stanford M G, Rack P D, Jariwala D. Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. npj 2D Materials and Applications, 2018, 2(1): 20
[98]
Sorger V J, Amin R, Khurgin J B, Ma Z, Dalir H, Khan S. Scaling vectors of attoJoule per bit modulators. Journal of Optics, 2018, 20(1): 014012
CrossRef Google scholar

Acknowledgements

This work was supported in part by the National Key Research and Development Project of China (No. 2018YFB2201901) and in part by the National Natural Science Foundation of China (Grant No. 61805090).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(695 KB)

Accesses

Citations

Detail

Sections
Recommended

/