Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser

Xiaohui LI, Jiajun PENG, Ruisheng LIU, Jishu LIU, Tianci FENG, Abdul Qyyum, Cunxiao GAO, Mingyuan XUE, Jian ZHANG

PDF(947 KB)
PDF(947 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (2) : 149-155. DOI: 10.1007/s12200-020-1057-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser

Author information +
History +

Abstract

In this paper, we have proposed and demonstrated the generation of passively mode-locked pulses and dissipative soliton resonance in an erbium-doped fiber laser based on Fe3O4 nanoparticles as saturable absorbers. We obtained self-starting mode-locked pulses with fundamental repetition frequency of 7.69 MHz and center wavelength of 1561 nm. The output of a pulsed laser has spectral width of 0.69 nm and pulse duration of 14 ns with rectangular pulse profile at the pump power of 190 mW. As far as we know, this is the first time that Fe3O4 nanoparticles have been developed as low-dimensional materials for passive mode-locking with rectangular pulse. Our experiments have confirmed that Fe3O4 has a wide prospect as a nonlinear photonics device for ultrafast fiber laser applications.

Graphical abstract

Keywords

Fe3O4 / rectangular pulse / dissipative soliton / erbium-doped fiber / nonlinear photonics

Cite this article

Download citation ▾
Xiaohui LI, Jiajun PENG, Ruisheng LIU, Jishu LIU, Tianci FENG, Abdul Qyyum, Cunxiao GAO, Mingyuan XUE, Jian ZHANG. Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser. Front. Optoelectron., 2020, 13(2): 149‒155 https://doi.org/10.1007/s12200-020-1057-4

References

[1]
Oktem B, Ülgüdür C, Ilday F Ö. Soliton–similariton fibre laser. Nature Photonics, 2010, 4(5): 307–311
CrossRef Google scholar
[2]
Kobtsev S, Kukarin S, Smirnov S, Turitsyn S, Latkin A. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Optics Express, 2009, 17(23): 20707–20713
CrossRef Pubmed Google scholar
[3]
Tang M, Tian X, Shum P, Fu S, Dong H, Gong Y. Four-wave mixing assisted self-stable 4 ´10 GHz actively mode-locked erbium fiber ring laser. Optics Express, 2006, 14(5): 1726–1730
CrossRef Pubmed Google scholar
[4]
Liu J S, Li X H, Guo Y X, Qyyum A, Shi Z J, Feng T C, Zhang Y, Jiang C X, Liu X F. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small, 2019, 15(38): 1902811
CrossRef Pubmed Google scholar
[5]
Greer E J, Smith K. All-optical FM mode-locking of fibre laser. Electronics Letters, 1992, 28(18): 1741
[6]
Cundiff S, Collings B, Knox W. Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser. Optics Express, 1997, 1(1): 12–21
CrossRef Pubmed Google scholar
[7]
Collings B C, Bergman K, Knox W H. Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser. Optics Letters, 1998, 23(2): 123–125
CrossRef Pubmed Google scholar
[8]
Moenster M, Glas P, Steinmeyer G, Iliew R, Lebedev N, Wedell R, Bretschneider M. Femtosecond Neodymium-doped microstructure fiber laser. Optics Express, 2005, 13(21): 8671–8677
CrossRef Pubmed Google scholar
[9]
Wu K, Chen B, Zhang X, Zhang S, Guo C, Li C, Xiao P, Wang J, Zhou L, Zou W, Chen J. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective. Optics Communications, 2018, 406: 214–229
CrossRef Google scholar
[10]
Yang T, Lin H, Jia B. Two-dimensional material functional devices enabled by direct laser fabrication. Frontiers of Optoelectronics, 2018, 11(1): 2–22
CrossRef Google scholar
[11]
Choi S, Jeong H, Hong B, Rotermund F, Yeom D. All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber. Laser Physics Letters, 2014, 11(1): 015101
CrossRef Google scholar
[12]
Liu X, Cui Y, Han D, Yao X, Sun Z. Distributed ultrafast fibre laser. Scientific Reports, 2015, 5(1): 9101
CrossRef Pubmed Google scholar
[13]
Haiml M, Grange R, Keller U. Optical characterization of semiconductor saturable absorbers. Applied Physics B, Lasers and Optics, 2004, 79(3): 331–339
CrossRef Google scholar
[14]
Yamashita S, Inoue Y, Maruyama S, Murakami Y, Yaguchi H, Jablonski M, Set S Y. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Optics Letters, 2004, 29(14): 1581–1583
CrossRef Pubmed Google scholar
[15]
Liu H H, Chow K K. Dark pulse generation in fiber lasers incorporating carbon nanotubes. Optics Express, 2014, 22(24): 29708–29713
CrossRef Pubmed Google scholar
[16]
Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G, Tian J G. Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Optics Express, 2014, 22(9): 10239–10247
CrossRef Pubmed Google scholar
[17]
Li D D, Zhu J W, Jiang M, Li D, Wu H, Han J, Sun Z P, Ren Z Y. Active-passive Q-switched fiber laser based on graphene microfiber. Applied Physics. B, Lasers and Optics, 2019, 125(11): 203
CrossRef Google scholar
[18]
Wang Y R, Zhang B T, Yang H, Hou J, Su X C, Sun Z P, He J L. Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. Journal of Lightwave Technology, 2019, 37(13): 2927–2931
CrossRef Google scholar
[19]
Chai T, Li X, Feng T, Guo P, Song Y, Chen Y, Zhang H. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 2018, 10(37): 17617–17622
CrossRef Pubmed Google scholar
[20]
Yan P, Lin R, Ruan S, Liu A, Chen H, Zheng Y, Chen S, Guo C, Hu J. A practical topological insulator saturable absorber for mode-locked fiber laser. Scientific Reports, 2015, 5(1): 8690
CrossRef Pubmed Google scholar
[21]
Mao D, Jiang B, Gan X, Ma C, Chen Y, Zhao C, Zhang H, Zheng J, Zhao J. Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers. Photonics Research, 2015, 3(2): A43
CrossRef Google scholar
[22]
22.Zhang Y, Li X, Qyyum A, Feng T, Guo P, Jiang J, Zheng H. PbS nanoparticles for ultrashort pulse generation in optical communication region. Particle & Particle Systems Characterization, 2018, 35(11): 1800341
CrossRef Google scholar
[23]
Hui Z, Xu W, Li X, Guo P, Zhang Y, Liu J. Cu2S nanosheets for ultrashort pulse generation in the near-infrared region. Nanoscale, 2019, 11(13): 6045–6051
CrossRef Pubmed Google scholar
[24]
Wu M, Li X, Wu K, Wu D, Dai S, Xu T, Nie Q. All-fiber 2 mm thulium-doped mode-locked fiber laser based on MoS2-saturable absorber. Optical Fiber Technology, 2019, 47: 152–157
CrossRef Google scholar
[25]
Liu W, Pang L, Han H, Bi K, Lei M, Wei Z. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale, 2017, 9(18): 5806–5811
CrossRef Pubmed Google scholar
[26]
Woodward R I, Howe R C T, Hu G, Torrisi F, Zhang M, Hasan T, Kelleher E J R. Few-layer MoS2-saturable absorbers for short-pulse laser technology: current status and future perspectives. Photonics Research, 2015, 3(2): A30
CrossRef Google scholar
[27]
Feng J, Li X, Shi Z, Zheng C, Li X, Leng D, Wang Y, Liu J, Zhu L. 2D ductile transition metal chalcogenides (TMCs): novel high-performance Ag2S nanosheets for ultrafast photonics. Advanced Optical Materials, 2019: 1901762
[28]
Kong L, Qin Z, Xie G, Guo Z, Zhang H, Yuan P, Qian L. Black phosphorus as broadband saturable absorber for pulsed lasers from 1 mm to 2.7 mm wavelength. Laser Physics Letters, 2016, 13(4): 045801
[29]
Wei R, Wang M, Zhu Z, Lai W, Yan P, Ruan S, Wang J, Sun Z, Hasan T. High-power femtosecond pulse generation from an all-fiber Er-doped chirped pulse amplification system. IEEE Photonics Journal, 2020, 12(2): 3200208
CrossRef Google scholar
[30]
Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S C, Tang D Y. Ultra-short pulse generation by a topological insulator based saturable absorber. Applied Physics Letters, 2012, 101(21): 211106
CrossRef Google scholar
[31]
Fang J, Yang Z, long S, Wu Z, Zhao X, Liang F, Jiang Z, Chen Z.High-speed indoor navigation system based on visible light and mobile phone. IEEE Photonics Journal, 2017, 9(2): 8200711
CrossRef Google scholar
[32]
Mao D, Cui X, Zhang W, Li M, Feng T, Du B, Lu H, Zhao J. Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles. Photonics Research, 2017, 5(1): 52
CrossRef Google scholar
[33]
Bai X, Mou C, Xu L, Wang S, Pu S, Zeng X. Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber. Applied Physics Express, 2016, 9(4): 042701
CrossRef Google scholar
[34]
Chan C T. Photonic crystals and topological photonics. Frontiers of Optoelectronics, 2020, 13(1): 2–3
CrossRef Google scholar
[35]
Li H, Ma B. Research development on fabrication and optical properties of nonlinear photonic crystals. Frontiers of Optoelectronics, 2020, 13(1): 35–49
CrossRef Google scholar
[36]
Xing G, Jiang J, Ying J Y, Ji W. Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold. Optics Express, 2010, 18(6): 6183–6190
CrossRef Pubmed Google scholar
[37]
Li N, Jia H, Liu J X, Cui L H, Jia Z X, Kang Z, Qin G S, Qin W P. Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm. Laser Physics Letters, 2019, 16(6): 065102
CrossRef Google scholar
[38]
Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 mm. Photonics Research, 2020, 8(1): 70–77
CrossRef Google scholar
[39]
Liu J S, Li X H, Qyyum A, Guo Y X, Chai T, Xu H, Jiang J. Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation. Beilstein Journal of Nanotechnology, 2019, 10: 1065–1072
CrossRef Pubmed Google scholar
[40]
El-Diasty F, El-Sayed H M, El-Hosiny F I, Ismail M I M. Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles. Current Opinion in Solid State and Materials Science, 2009, 13(1–2): 28–34
CrossRef Google scholar
[41]
Tang D Y, Zhao L M, Zhao B, Liu A Q. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Physical Review A, 2005, 72(4): 043816
CrossRef Google scholar
[42]
Guo B, Yao Y, Tian J J, Zhao Y F, Liu S, Li M, Quan M R. Observation of bright-dark soliton pair in a fiber laser with topological insulator. IEEE Photonics Technology Letters, 2015, 27(7): 701–704
CrossRef Google scholar
[43]
Zhang H, Tang D, Zhao L, Wu X. Dual-wavelength domain wall solitons in a fiber ring laser. Optics Express, 2011, 19(4): 3525–3530
CrossRef Pubmed Google scholar
[44]
Li X, Liu X, Hu X, Wang L, Lu H, Wang Y, Zhao W. Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime. Optics Letters, 2010, 35(19): 3249–3251
CrossRef Pubmed Google scholar
[45]
Chang W, Ankiewicz A, Soto-Crespo J M, Akhmediev N. Dissipative soliton resonances in laser models with parameter management. Journal of Applied Physics, 2008, 25(12): 1972
CrossRef Google scholar
[46]
Wang X, Xia Q, Gu B A. A 1.9 mm noise-like mode-locked fiber laser based on compact figure-9 resonator. Optics Communications, 2019, 434: 180–183
CrossRef Google scholar
[47]
Bravo-Huerta E, Durán-Sánchez M, Álvarez-Tamayo R I, Santiago-Hernández H, Bello-Jiménez M, Posada-Ramírez B, Ibarra-Escamilla B, Pottiez O, Kuzin E A. Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser. Optics Express, 2019, 27(9): 12349–12359
CrossRef Pubmed Google scholar
[48]
Wang S K, Ning Q Y, Luo A P, Lin Z B, Luo Z C, Xu W C. Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser. Optics Express, 2013, 21(2): 2402–2407
CrossRef Pubmed Google scholar
[49]
Luo Z C, Cao W J, Lin Z B, Cai Z R, Luo A P, Xu W C. Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser. Optics letters, 2012, 37(22): 4777–4779
CrossRef Pubmed Google scholar
[50]
Liu L, Liao J H, Ning Q Y, Yu W, Luo A P, Xu S H, Luo Z C, Yang Z M, Xu W C. Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition. Optics Express, 2013, 21(22): 27087–27092
CrossRef Pubmed Google scholar
[51]
Li X, Wang Y, Zhao W, Liu X, Wang Y, Tsang Y H, Zhang W, Hu X, Yang Z, Gao C, Li C, Shen D. All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser. Journal of Lightwave Technology, 2012, 30(15): 2502–2507
CrossRef Google scholar
[52]
Jeong Y, Vazquez-Zuniga L A, Lee S, Kwon Y. On the formation of noise-like pulses in fiber ring cavity configurations. Optical Fiber Technology, 2014, 20(6): 575–592
CrossRef Google scholar
[53]
Li X, Wang Y, Zhang W, Zhao W. Experimental observation of soliton molecules evolution in Yb-doped passively mode locked fiber lasers. Laser Physics Letters, 2014, 11(7): 075103
CrossRef Google scholar

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 61605106), Funded projects for the Academic Leader and Academic Backbones, Shaanxi Normal University (No. 18QNGG006), Shaanxi International Cooperation Project (No. 2020KW-005), Starting Grants of Shaanxi Normal University (Nos. 1112010209 and 1110010717), Open Research Fund of State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences (No. SKLST201809), Fundamental Research Funds for the Central Universities (Nos. GK201802006 and 2018CSLY005).

Disclosures

The authors declare no conflicts of interest.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(947 KB)

Accesses

Citations

Detail

Sections
Recommended

/