Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser
Xiaohui LI, Jiajun PENG, Ruisheng LIU, Jishu LIU, Tianci FENG, Abdul Qyyum, Cunxiao GAO, Mingyuan XUE, Jian ZHANG
Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser
In this paper, we have proposed and demonstrated the generation of passively mode-locked pulses and dissipative soliton resonance in an erbium-doped fiber laser based on Fe3O4 nanoparticles as saturable absorbers. We obtained self-starting mode-locked pulses with fundamental repetition frequency of 7.69 MHz and center wavelength of 1561 nm. The output of a pulsed laser has spectral width of 0.69 nm and pulse duration of 14 ns with rectangular pulse profile at the pump power of 190 mW. As far as we know, this is the first time that Fe3O4 nanoparticles have been developed as low-dimensional materials for passive mode-locking with rectangular pulse. Our experiments have confirmed that Fe3O4 has a wide prospect as a nonlinear photonics device for ultrafast fiber laser applications.
Fe3O4 / rectangular pulse / dissipative soliton / erbium-doped fiber / nonlinear photonics
[1] |
Oktem B, Ülgüdür C, Ilday F Ö. Soliton–similariton fibre laser. Nature Photonics, 2010, 4(5): 307–311
CrossRef
Google scholar
|
[2] |
Kobtsev S, Kukarin S, Smirnov S, Turitsyn S, Latkin A. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Optics Express, 2009, 17(23): 20707–20713
CrossRef
Pubmed
Google scholar
|
[3] |
Tang M, Tian X, Shum P, Fu S, Dong H, Gong Y. Four-wave mixing assisted self-stable 4 ´10 GHz actively mode-locked erbium fiber ring laser. Optics Express, 2006, 14(5): 1726–1730
CrossRef
Pubmed
Google scholar
|
[4] |
Liu J S, Li X H, Guo Y X, Qyyum A, Shi Z J, Feng T C, Zhang Y, Jiang C X, Liu X F. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small, 2019, 15(38): 1902811
CrossRef
Pubmed
Google scholar
|
[5] |
Greer E J, Smith K. All-optical FM mode-locking of fibre laser. Electronics Letters, 1992, 28(18): 1741
|
[6] |
Cundiff S, Collings B, Knox W. Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser. Optics Express, 1997, 1(1): 12–21
CrossRef
Pubmed
Google scholar
|
[7] |
Collings B C, Bergman K, Knox W H. Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser. Optics Letters, 1998, 23(2): 123–125
CrossRef
Pubmed
Google scholar
|
[8] |
Moenster M, Glas P, Steinmeyer G, Iliew R, Lebedev N, Wedell R, Bretschneider M. Femtosecond Neodymium-doped microstructure fiber laser. Optics Express, 2005, 13(21): 8671–8677
CrossRef
Pubmed
Google scholar
|
[9] |
Wu K, Chen B, Zhang X, Zhang S, Guo C, Li C, Xiao P, Wang J, Zhou L, Zou W, Chen J. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective. Optics Communications, 2018, 406: 214–229
CrossRef
Google scholar
|
[10] |
Yang T, Lin H, Jia B. Two-dimensional material functional devices enabled by direct laser fabrication. Frontiers of Optoelectronics, 2018, 11(1): 2–22
CrossRef
Google scholar
|
[11] |
Choi S, Jeong H, Hong B, Rotermund F, Yeom D. All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber. Laser Physics Letters, 2014, 11(1): 015101
CrossRef
Google scholar
|
[12] |
Liu X, Cui Y, Han D, Yao X, Sun Z. Distributed ultrafast fibre laser. Scientific Reports, 2015, 5(1): 9101
CrossRef
Pubmed
Google scholar
|
[13] |
Haiml M, Grange R, Keller U. Optical characterization of semiconductor saturable absorbers. Applied Physics B, Lasers and Optics, 2004, 79(3): 331–339
CrossRef
Google scholar
|
[14] |
Yamashita S, Inoue Y, Maruyama S, Murakami Y, Yaguchi H, Jablonski M, Set S Y. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Optics Letters, 2004, 29(14): 1581–1583
CrossRef
Pubmed
Google scholar
|
[15] |
Liu H H, Chow K K. Dark pulse generation in fiber lasers incorporating carbon nanotubes. Optics Express, 2014, 22(24): 29708–29713
CrossRef
Pubmed
Google scholar
|
[16] |
Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G, Tian J G. Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Optics Express, 2014, 22(9): 10239–10247
CrossRef
Pubmed
Google scholar
|
[17] |
Li D D, Zhu J W, Jiang M, Li D, Wu H, Han J, Sun Z P, Ren Z Y. Active-passive Q-switched fiber laser based on graphene microfiber. Applied Physics. B, Lasers and Optics, 2019, 125(11): 203
CrossRef
Google scholar
|
[18] |
Wang Y R, Zhang B T, Yang H, Hou J, Su X C, Sun Z P, He J L. Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. Journal of Lightwave Technology, 2019, 37(13): 2927–2931
CrossRef
Google scholar
|
[19] |
Chai T, Li X, Feng T, Guo P, Song Y, Chen Y, Zhang H. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 2018, 10(37): 17617–17622
CrossRef
Pubmed
Google scholar
|
[20] |
Yan P, Lin R, Ruan S, Liu A, Chen H, Zheng Y, Chen S, Guo C, Hu J. A practical topological insulator saturable absorber for mode-locked fiber laser. Scientific Reports, 2015, 5(1): 8690
CrossRef
Pubmed
Google scholar
|
[21] |
Mao D, Jiang B, Gan X, Ma C, Chen Y, Zhao C, Zhang H, Zheng J, Zhao J. Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers. Photonics Research, 2015, 3(2): A43
CrossRef
Google scholar
|
[22] |
22.Zhang Y, Li X, Qyyum A, Feng T, Guo P, Jiang J, Zheng H. PbS nanoparticles for ultrashort pulse generation in optical communication region. Particle & Particle Systems Characterization, 2018, 35(11): 1800341
CrossRef
Google scholar
|
[23] |
Hui Z, Xu W, Li X, Guo P, Zhang Y, Liu J. Cu2S nanosheets for ultrashort pulse generation in the near-infrared region. Nanoscale, 2019, 11(13): 6045–6051
CrossRef
Pubmed
Google scholar
|
[24] |
Wu M, Li X, Wu K, Wu D, Dai S, Xu T, Nie Q. All-fiber 2 mm thulium-doped mode-locked fiber laser based on MoS2-saturable absorber. Optical Fiber Technology, 2019, 47: 152–157
CrossRef
Google scholar
|
[25] |
Liu W, Pang L, Han H, Bi K, Lei M, Wei Z. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale, 2017, 9(18): 5806–5811
CrossRef
Pubmed
Google scholar
|
[26] |
Woodward R I, Howe R C T, Hu G, Torrisi F, Zhang M, Hasan T, Kelleher E J R. Few-layer MoS2-saturable absorbers for short-pulse laser technology: current status and future perspectives. Photonics Research, 2015, 3(2): A30
CrossRef
Google scholar
|
[27] |
Feng J, Li X, Shi Z, Zheng C, Li X, Leng D, Wang Y, Liu J, Zhu L. 2D ductile transition metal chalcogenides (TMCs): novel high-performance Ag2S nanosheets for ultrafast photonics. Advanced Optical Materials, 2019: 1901762
|
[28] |
Kong L, Qin Z, Xie G, Guo Z, Zhang H, Yuan P, Qian L. Black phosphorus as broadband saturable absorber for pulsed lasers from 1 mm to 2.7 mm wavelength. Laser Physics Letters, 2016, 13(4): 045801
|
[29] |
Wei R, Wang M, Zhu Z, Lai W, Yan P, Ruan S, Wang J, Sun Z, Hasan T. High-power femtosecond pulse generation from an all-fiber Er-doped chirped pulse amplification system. IEEE Photonics Journal, 2020, 12(2): 3200208
CrossRef
Google scholar
|
[30] |
Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S C, Tang D Y. Ultra-short pulse generation by a topological insulator based saturable absorber. Applied Physics Letters, 2012, 101(21): 211106
CrossRef
Google scholar
|
[31] |
Fang J, Yang Z, long S, Wu Z, Zhao X, Liang F, Jiang Z, Chen Z.High-speed indoor navigation system based on visible light and mobile phone. IEEE Photonics Journal, 2017, 9(2): 8200711
CrossRef
Google scholar
|
[32] |
Mao D, Cui X, Zhang W, Li M, Feng T, Du B, Lu H, Zhao J. Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles. Photonics Research, 2017, 5(1): 52
CrossRef
Google scholar
|
[33] |
Bai X, Mou C, Xu L, Wang S, Pu S, Zeng X. Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber. Applied Physics Express, 2016, 9(4): 042701
CrossRef
Google scholar
|
[34] |
Chan C T. Photonic crystals and topological photonics. Frontiers of Optoelectronics, 2020, 13(1): 2–3
CrossRef
Google scholar
|
[35] |
Li H, Ma B. Research development on fabrication and optical properties of nonlinear photonic crystals. Frontiers of Optoelectronics, 2020, 13(1): 35–49
CrossRef
Google scholar
|
[36] |
Xing G, Jiang J, Ying J Y, Ji W. Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold. Optics Express, 2010, 18(6): 6183–6190
CrossRef
Pubmed
Google scholar
|
[37] |
Li N, Jia H, Liu J X, Cui L H, Jia Z X, Kang Z, Qin G S, Qin W P. Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm. Laser Physics Letters, 2019, 16(6): 065102
CrossRef
Google scholar
|
[38] |
Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 mm. Photonics Research, 2020, 8(1): 70–77
CrossRef
Google scholar
|
[39] |
Liu J S, Li X H, Qyyum A, Guo Y X, Chai T, Xu H, Jiang J. Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation. Beilstein Journal of Nanotechnology, 2019, 10: 1065–1072
CrossRef
Pubmed
Google scholar
|
[40] |
El-Diasty F, El-Sayed H M, El-Hosiny F I, Ismail M I M. Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles. Current Opinion in Solid State and Materials Science, 2009, 13(1–2): 28–34
CrossRef
Google scholar
|
[41] |
Tang D Y, Zhao L M, Zhao B, Liu A Q. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Physical Review A, 2005, 72(4): 043816
CrossRef
Google scholar
|
[42] |
Guo B, Yao Y, Tian J J, Zhao Y F, Liu S, Li M, Quan M R. Observation of bright-dark soliton pair in a fiber laser with topological insulator. IEEE Photonics Technology Letters, 2015, 27(7): 701–704
CrossRef
Google scholar
|
[43] |
Zhang H, Tang D, Zhao L, Wu X. Dual-wavelength domain wall solitons in a fiber ring laser. Optics Express, 2011, 19(4): 3525–3530
CrossRef
Pubmed
Google scholar
|
[44] |
Li X, Liu X, Hu X, Wang L, Lu H, Wang Y, Zhao W. Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime. Optics Letters, 2010, 35(19): 3249–3251
CrossRef
Pubmed
Google scholar
|
[45] |
Chang W, Ankiewicz A, Soto-Crespo J M, Akhmediev N. Dissipative soliton resonances in laser models with parameter management. Journal of Applied Physics, 2008, 25(12): 1972
CrossRef
Google scholar
|
[46] |
Wang X, Xia Q, Gu B A. A 1.9 mm noise-like mode-locked fiber laser based on compact figure-9 resonator. Optics Communications, 2019, 434: 180–183
CrossRef
Google scholar
|
[47] |
Bravo-Huerta E, Durán-Sánchez M, Álvarez-Tamayo R I, Santiago-Hernández H, Bello-Jiménez M, Posada-Ramírez B, Ibarra-Escamilla B, Pottiez O, Kuzin E A. Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser. Optics Express, 2019, 27(9): 12349–12359
CrossRef
Pubmed
Google scholar
|
[48] |
Wang S K, Ning Q Y, Luo A P, Lin Z B, Luo Z C, Xu W C. Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser. Optics Express, 2013, 21(2): 2402–2407
CrossRef
Pubmed
Google scholar
|
[49] |
Luo Z C, Cao W J, Lin Z B, Cai Z R, Luo A P, Xu W C. Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser. Optics letters, 2012, 37(22): 4777–4779
CrossRef
Pubmed
Google scholar
|
[50] |
Liu L, Liao J H, Ning Q Y, Yu W, Luo A P, Xu S H, Luo Z C, Yang Z M, Xu W C. Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition. Optics Express, 2013, 21(22): 27087–27092
CrossRef
Pubmed
Google scholar
|
[51] |
Li X, Wang Y, Zhao W, Liu X, Wang Y, Tsang Y H, Zhang W, Hu X, Yang Z, Gao C, Li C, Shen D. All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser. Journal of Lightwave Technology, 2012, 30(15): 2502–2507
CrossRef
Google scholar
|
[52] |
Jeong Y, Vazquez-Zuniga L A, Lee S, Kwon Y. On the formation of noise-like pulses in fiber ring cavity configurations. Optical Fiber Technology, 2014, 20(6): 575–592
CrossRef
Google scholar
|
[53] |
Li X, Wang Y, Zhang W, Zhao W. Experimental observation of soliton molecules evolution in Yb-doped passively mode locked fiber lasers. Laser Physics Letters, 2014, 11(7): 075103
CrossRef
Google scholar
|
/
〈 | 〉 |