Intense terahertz radiation: generation and application

Yan ZHANG, Kaixuan LI, Huan ZHAO

PDF(8048 KB)
PDF(8048 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (1) : 4-36. DOI: 10.1007/s12200-020-1052-9
REVIEW ARTICLE
REVIEW ARTICLE

Intense terahertz radiation: generation and application

Author information +
History +

Abstract

Strong terahertz (THz) radiation provides a powerful tool to manipulate and control complex condensed matter systems. This review provides an overview of progress in the generation, detection, and applications of intense THz radiation. The tabletop intense THz sources based on Ti:sapphire laser are reviewed, including photoconductive antennas (PCAs), optical rectification sources, plasma-based THz sources, and some novel techniques for THz generations, such as topological insulators, spintronic materials, and metasurfaces. The coherent THz detection methods are summarized, and their limitations for intense THz detection are analyzed. Applications of intense THz radiation are introduced, including applications in spectroscopy detection, nonlinear effects, and switching of coherent magnons. The review is concluded with a short perspective on the generation and applications of intense THz radiation.

Graphical abstract

Keywords

terahertz (THz) radiation / THz generation / THz detection / light–matter interaction

Cite this article

Download citation ▾
Yan ZHANG, Kaixuan LI, Huan ZHAO. Intense terahertz radiation: generation and application. Front. Optoelectron., 2021, 14(1): 4‒36 https://doi.org/10.1007/s12200-020-1052-9

References

[1]
Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
CrossRef Google scholar
[2]
Beard M C, Turner G M, Schmuttenmaer C A. Terahertz spectroscopy. Journal of Physical Chemistry B, 2002, 106(29): 7146–7159
CrossRef Google scholar
[3]
Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics, 2011, 83(2): 543–586
CrossRef Google scholar
[4]
Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
CrossRef Google scholar
[5]
Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics, 2013, 7(9): 680–690
CrossRef Google scholar
[6]
Sell A, Leitenstorfer A, Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letters, 2008, 33(23): 2767–2769
CrossRef Pubmed Google scholar
[7]
Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science. Nature Photonics, 2017, 11(1): 16–18
CrossRef Google scholar
[8]
Hirori H, Tanaka K. Dynamical nonlinear interaction of solids with strong terahertz pulses. Journal of the Physical Society of Japan, 2016, 85(8): 082001
CrossRef Google scholar
[9]
Yamaguchi K, Nakajima M, Suemoto T. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Physical Review Letters, 2010, 105(23): 237201
CrossRef Pubmed Google scholar
[10]
Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics, 2011, 5(1): 31–34
CrossRef Google scholar
[11]
Daranciang D, Goodfellow J, Fuchs M, Wen H, Ghimire S, Reis D A, Loos H, Fisher A S, Lindenberg A M. Single-cycle terahertz pulses with >0.2 V/Å field amplitudes via coherent transition radiation. Applied Physics Letters, 2011, 99(14): 141117
CrossRef Google scholar
[12]
Li H T, Lu Y L, He Z G, Jia Q K, Wang L. Generation of intense narrow-band tunable terahertz radiation from highly bunched electron pulse train. Journal of Infrared, Millimeter and Terahertz Waves, 2016, 37(7): 649–657
CrossRef Google scholar
[13]
Hou L, Shi W. An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability. IEEE Transactions on Electron Devices, 2013, 60(5): 1619–1624
CrossRef Google scholar
[14]
Beard M C, Turner G M, Schmuttenmaer C A. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time resolved terahertz spectroscopy. Journal of Applied Physics, 2001, 90(12): 5915–5923
CrossRef Google scholar
[15]
Buryakov A M, Ivanov M S, Nomoev S A, Khusyainov D I, Mishina E D, Khomchenko V A, Vasilevskii I S, Vinichenko A N, Kozlovskii K I, Chistyakov A A, Paixão J A. An advanced approach to control the electro-optical properties of LT-GaAs based terahertz photoconductive antenna. Materials Research Bulletin, 2020, 122: 110688
CrossRef Google scholar
[16]
Doany F E, Grischkowsky D, Chi C C. Carrier lifetime versus ion-implantation dose in silicon on sapphire. Applied Physics Letters, 1987, 50(8): 460–462
CrossRef Google scholar
[17]
Sarkisov S Y, Safiullin F D, Skakunov M S, Tolbanov O P, Tyazhev A V, Nazarov M M, Shkurinov A P. Dipole antennas based on SI-GaAs:Cr for generation and detection of terahertz radiation. Russian Physics Journal, 2013, 55(8): 890–898
CrossRef Google scholar
[18]
Rode J C, Chiang H W, Choudhary P, Jain V, Thibeault B J, Mitchell W J, Rodwell M J W, Urteaga M, Loubychev D, Snyder A, Wu Y, Fastenau J M, Liu A W K. Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth. IEEE Journal of Transactions on Electron Devices, 2015, 62(9): 2779–2785
CrossRef Google scholar
[19]
Simoens F, Meilhan J, Delplanque B, Gidon S, Lasfargues G, Dera J L, Nguyen D T, Ouvrier-Buffet J L, Pocas S, Maillou T, Cathabard O, Barbieri S. Real-time imaging with THz fully-customized uncooled amorphous-silicon microbolometer focal plane arrays. Proceedings of the Society for Photo-Instrumentation Engineers, 2012, 8363: 83630D, 83630D-12
CrossRef Google scholar
[20]
You D, Jones R R, Bucksbaum P H, Dykaar D R. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Optics Letters, 1993, 18(4): 290–292
CrossRef Pubmed Google scholar
[21]
Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004
CrossRef Google scholar
[22]
Kasai S, Watanabe M, Ouchi T. Improved terahertz wave intensity in photoconductive antennas formed of annealed low-temperature grown GaAs. Japanese Journal of Applied Physics, 2007, 46(7A): 4163–4165
CrossRef Google scholar
[23]
Yoneda H, Tokuyama K, Nagata H. Generation of high-peak-power THz radiation by using diamond photoconductive antenna array. In: Proceedings of the 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS). San Diego: IEEE, 2001, 644–645
[24]
Ono S, Murakami H, Quema A, Diwa G, Sarukura N, Nagasaka R, Ichikawa Y, Ogino H, Ohshima E, Yoshikawa A, Fukuda T. Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses. Applied Physics Letters, 2005, 87(26): 261112
CrossRef Google scholar
[25]
Ahi K. Review of GaN-based devices for terahertz operation. Optical Engineering (Redondo Beach, Calif.), 2017, 56(09): 090901
CrossRef Google scholar
[26]
Cho P S, Ho P T, Goldhar J, Lee C H. Photoconductivity in ZnSe under high electric fields. IEEE Journal of Quantum Electronics, 1994, 30(6): 1489–1497
CrossRef Google scholar
[27]
Kikuma I, Matsuo M, Komuro T. In situ annealing of melt-Grown ZnSe crystals under Zn partial pressure. Japanese Journal of Applied Physics, 1992, 31(Part 2, No. 5A): L531–L534
CrossRef Google scholar
[28]
Ropagnol X, Bouvier M, Reid M, Ozaki T. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas. Journal of Applied Physics, 2014, 116(4): 043107
CrossRef Google scholar
[29]
Imafuji O, Singh B P, Hirose Y, Fukushima Y, Takigawa S. High power subterahertz electromagnetic wave radiation from GaN photoconductive switch. Applied Physics Letters, 2007, 91(7): 071112
CrossRef Google scholar
[30]
Xu M, Mittendorff M, Dietz R J B, Künzel H, Sartorius B, Göbel T, Schneider H, Helm M, Winnerl S. Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 µm. Applied Physics Letters, 2013, 103(25): 251114
CrossRef Google scholar
[31]
Salem B, Morris D, Aimez V, Beerens J, Beauvais J, Houde D. Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates. Journal of Physics Condensed Matter, 2005, 17(46): 7327–7333
CrossRef Google scholar
[32]
Dreyhaupt A, Winnerl S, Dekorsy T, Helm M. High-intensity terahertz radiation from a microstructured large-area photoconductor. Applied Physics Letters, 2005, 86(12): 121114
CrossRef Google scholar
[33]
Ropagnol X, Morandotti R, Ozaki T, Reid M. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas. IEEE Journal of Photonics, 2011, 3(2): 174–186
CrossRef Google scholar
[34]
Hattori T, Egawa K, Ookuma S I, Itatani T. Intense terahertz pulses from large-aperture antenna with interdigitated electrodes. Japanese Journal of Applied Physics, 2006, 45(15): L422–L424
CrossRef Google scholar
[35]
Beck M, Schäfer H, Klatt G, Demsar J, Winnerl S, Helm M, Dekorsy T. Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Optics Express, 2010, 18(9): 9251–9257
CrossRef Pubmed Google scholar
[36]
Yardimci N T, Yang S H, Berry C W, Jarrahi M. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Transactions on Terahertz Science and Technology, 2015, 5(2): 223–229
CrossRef Google scholar
[37]
Madéo J, Jukam N, Oustinov D, Rosticher M, Rungsawang R, Tignon J, Dhillon S S. Frequency tunable terahertz interdigitated photoconductive antennas. Electronics Letters, 2010, 46(9): 611–613
CrossRef Google scholar
[38]
Ropagnol X, Morandotti R, Ozaki T, Reid M. THz pulse shaping and improved optical-to-THz conversion efficiency using a binary phase mask. Optics Letters, 2011, 36(14): 2662–2664
CrossRef Pubmed Google scholar
[39]
Ropagnol X, Khorasaninejad M, Raeiszadeh M, Safavi-Naeini S, Bouvier M, Côté C Y, Laramée A, Reid M, Gauthier M A, Ozaki T. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas. Optics Express, 2016, 24(11): 11299–11311
CrossRef Pubmed Google scholar
[40]
Ropagnol X, Chai X, Raeis-Zadeh S M, Safavi-Naeini S, Kirouac-Turmel M, Bouvier M, Côté C Y, Reid M, Gauthier M A, Ozaki T. Influence of gap size on intense THz generation from ZnSe interdigitated large aperture photoconductive antennas. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1–8
CrossRef Google scholar
[41]
Shi W, Hou L, Wang X M. High effective terahertz radiation from semi-insulating-GaAs photoconductive antennas with ohmic contact electrodes. Journal of Applied Physics, 2011, 110(2): 023111
CrossRef Google scholar
[42]
Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pules by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19
CrossRef Google scholar
[43]
Blanchard F, Sharma G, Razzari L, Ropagnol X, Bandulet H C, Vidal F, Morandotti R, Kieffer J C, Ozaki T, Tiedje H, Haugen H, Reid M, Hegmann F. Generation of intense terahertz radiation via optical methods. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 5–16
CrossRef Google scholar
[44]
Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A. Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Optics Express, 2007, 15(20): 13212–13220
CrossRef Pubmed Google scholar
[45]
Löffler T, Hahn T, Thomson M, Jacob F, Roskos H. Large-area electro-optic ZnTe terahertz emitters. Optics Express, 2005, 13(14): 5353–5362
CrossRef Pubmed Google scholar
[46]
Fülöp J A, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, Hebling J. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters, 2012, 37(4): 557–559
CrossRef Pubmed Google scholar
[47]
Blanchard F, Ropagnol X, Hafez H, Razavipour H, Bolduc M, Morandotti R, Ozaki T, Cooke D G. Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies. Optics Letters, 2014, 39(15): 4333–4336
CrossRef Pubmed Google scholar
[48]
Pálfalvi L, Hebling J, Almasi G, Peter A, Polgar K, Lengyel K, Szipocs R. Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3. Journal of Applied Physics, 2004, 95(3): 902–908
CrossRef Google scholar
[49]
Huang S W, Granados E, Huang W R, Hong K H, Zapata L E, Kärtner F X. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Optics Letters, 2013, 38(5): 796–798
CrossRef Pubmed Google scholar
[50]
Wu X J, Ma J L, Zhang B L, Chai S S, Fang Z J, Xia C Y, Kong D Y, Wang J G, Liu H, Zhu C Q, Wang X, Ruan C J, Li Y T. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti:sapphire laser pulses. Optics Express, 2018, 26(6): 7107–7116
CrossRef Pubmed Google scholar
[51]
Oh T I, Yoo Y J, You Y S, Kim K Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103
CrossRef Google scholar
[52]
Jazbinsek M, Puc U, Abina A, Zidansek A. Organic crystal for THz photonics. Applied Sciences (Basel, Switzerland), 2019, 9(5): 882
CrossRef Google scholar
[53]
Hauri C P, Ruchert C, Vicario C, Ardana F. Strong-field single-cycle THz pulses generated in an organic crystal. Applied Physics Letters, 2011, 99(16): 161116
CrossRef Google scholar
[54]
Shalaby M, Hauri C P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nature Communications, 2015, 6(1): 5976
CrossRef Pubmed Google scholar
[55]
Liu B, Bromberger H, Cartella A, Gebert T, Först M, Cavalleri A. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz. Optics Letters, 2017, 42(1): 129–131
CrossRef Pubmed Google scholar
[56]
Zhao H, Tan Y, Wu T, Steinfeld G, Zhang Y, Zhang C L, Zhang L L, Shalaby M. Efficient broadband terahertz generation from organic crystal BNA using near infrared pump. Applied Physics Letters, 2019, 114(24): 241101
CrossRef Google scholar
[57]
Kaindl R A, Eickemeyer F, Woerner M, Elsaesser T. Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory. Applied Physics Letters, 1999, 75(8): 1060–1062
CrossRef Google scholar
[58]
Junginger F, Sell A, Schubert O, Mayer B, Brida D, Marangoni M, Cerullo G, Leitenstorfer A, Huber R. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Optics Letters, 2010, 35(15): 2645–2647
CrossRef Pubmed Google scholar
[59]
Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728
CrossRef Pubmed Google scholar
[60]
Sun W F, Zhou Y S, Wang X K, Zhang Y. External electric field control of THz pulse generation in ambient air. Optics Express, 2008, 16(21): 16573–16580
CrossRef Pubmed Google scholar
[61]
Bakhtiari F, Esmaeilzadeh M, Ghafary B. Terahertz radiation with high power and high efficiency in a magnetized plasma. Physics of Plasmas, 2017, 24(7): 073112
CrossRef Google scholar
[62]
Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005
CrossRef Pubmed Google scholar
[63]
Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugžlys A, Baltuška A, Tzortzakis S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nature Communications, 2020, 11(1): 292
CrossRef Pubmed Google scholar
[64]
Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics, 2008, 2(10): 605–609
CrossRef Google scholar
[65]
Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
CrossRef Pubmed Google scholar
[66]
Dai J M, Zhang X C. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Applied Physics Letters, 2009, 94(2): 021117
CrossRef Google scholar
[67]
Zhang L L, Wang W M, Wu T, Zhang R, Zhang S J, Zhang C L, Zhang Y, Sheng Z M, Zhang X C. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios. Physical Review Letters, 2017, 119(23): 235001
CrossRef Pubmed Google scholar
[68]
Peng X Y, Li C, Chen M, Toncian T, Jung R, Willi O, Li Y T, Wang W M, Wang S J, Liu F, Pukhov A, Sheng Z M, Zhang J. Strong terahertz radiation from air plasmas generated by an aperture-limited Gaussian pump laser beam. Applied Physics Letters, 2009, 94(10): 101502
CrossRef Google scholar
[69]
Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
CrossRef Pubmed Google scholar
[70]
Liao G Q, Li Y T, Zhang Y H, Liu H, Ge X L, Yang S, Wei W Q, Yuan X H, Deng Y Q, Zhu B J, Zhang Z, Wang W M, Sheng Z M, Chen L M, Lu X, Ma J L, Wang X, Zhang J. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions. Physical Review Letters, 2016, 116(20): 205003
CrossRef Pubmed Google scholar
[71]
Tian Y, Liu J S, Bai Y F, Zhou S Y, Sun H Y, Liu W W, Zhao J Y, Li R X, Xu Z Z. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation. Nature Photonics, 2017, 11(4): 242–246
CrossRef Google scholar
[72]
Jin Q, E Y, Williams K, Dai J, Zhang X C. Observation of broadband terahertz wave generation from liquid water. Applied Physics Letters, 2017, 111(7): 071103
CrossRef Google scholar
[73]
Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nature Communications, 2017, 8(1): 1184
CrossRef Pubmed Google scholar
[74]
Zhang L L, Wang W M, Wu T, Feng S J, Kang K, Zhang C L, Zhang Y, Li Y T, Sheng Z M, Zhang X C. Strong terahertz radiation from a liquid-water line. Physical Review Applied, 2019, 12(1): 014005
CrossRef Google scholar
[75]
Zhu L G, Kubera B, Fai Mak K, Shan J. Effect of surface states on terahertz emission from the Bi2Se3 surface. Scientific Reports, 2015, 5(1): 10308
CrossRef Pubmed Google scholar
[76]
Luo C W, Chen H J, Tu C M, Lee C C, Ku S A, Tzeng W Y, Yeh T T, Chiang M C, Wang H J, Chu W C, Lin J Y, Wu K H, Juang J Y, Kobayashi T, Cheng C M, Chen C H, Tsuei K D, Berger H, Sankar R, Chou F C, Yang H D. THz generation and detection on Dirac Fermions in topological insulators. Advanced Optical Materials, 2013, 1(11): 804–808
CrossRef Google scholar
[77]
Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics, 2016, 10(7): 483–488
CrossRef Google scholar
[78]
Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S N, Wu Y Z, Qi J B. Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure. Advanced Optical Materials, 2016, 4(12): 1944–1949
CrossRef Google scholar
[79]
Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV·cm−1 from a metallic spintronic emitter. Applied Physics Letters, 2017, 110: 252402
CrossRef Google scholar
[80]
Luo L, Chatzakis I, Wang J, Niesler F B P, Wegener M, Koschny T, Soukoulis C M. Broadband terahertz generation from metamaterials. Nature Communications, 2014, 5(1): 3055
CrossRef Pubmed Google scholar
[81]
Keren-Zur S, Tal M, Fleischer S, Mittleman D M, Ellenbogen T. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nature Communications, 2019, 10(1): 1778
CrossRef Pubmed Google scholar
[82]
Ropagnol X, Blanchard F, Ozaki T, Reid M. Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Applied Physics Letters, 2013, 103(16): 161108
CrossRef Google scholar
[83]
Hirori H, Doi A A, Blanchard F, Tanaka K. Single cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106
CrossRef Google scholar
[84]
Smith P R, Auston D H, Nuss M C. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 1988, 24(2): 255–260
CrossRef Google scholar
[85]
Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525
CrossRef Google scholar
[86]
Fattinger C, Grischkowsky D R. Terahertz beams. Applied Physics Letters, 1989, 54(6): 490–492
CrossRef Google scholar
[87]
van Exter M, Grischkowsky D R. Characterization of an optoelectronic terahertz beam system. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(11): 1684–1691
CrossRef Google scholar
[88]
Lee Y S. Principles of Terahertz Science and Technology. Berlin: Springer, 2008
[89]
Singh A, Pal S, Surdi H, Prabhu S S, Mathimalar S, Nanal V, Pillay R G, Döhler G H. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection. Optics Express, 2015, 23(5): 6656–6661
CrossRef Pubmed Google scholar
[90]
Liu T A, Tani M, Nakajima M, Hangyo M, Pan C L. Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs. Applied Physics Letters, 2003, 83(7): 1322–1324
CrossRef Google scholar
[91]
Hattori T, Tukamoto K, Nakatsuka H. Time-resolved study of intense terahertz pulses generated by a large aperture photoconductive antenna. Japanese Journal of Applied Physics, 2001, 40(Part 1, No. 8): 4907–4912
CrossRef Google scholar
[92]
Jepsen P U, Jacobsen R H, Keiding S R. Generation and detection of terahertz pulses from biased semiconductor antennas. Journal of the Optical Society of America B, Optical Physics, 1996, 13(11): 2424–2436
CrossRef Google scholar
[93]
Sharma G, Al-Naib I, Hafez H, Morandotti R, Cooke D G, Ozaki T. Carrier density dependence of the nonlinear absorption of intense THz radiation in GaAs. Optics Express, 2012, 20(16): 18016–18024
CrossRef Pubmed Google scholar
[94]
Gallot G, Zhang J, McGowan R, Jeon T, Grischkowsky D. Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation. Applied Physics Letters, 1999, 74(23): 3450–3452
CrossRef Google scholar
[95]
Kübler C, Huber R, Tübel S, Leitenstorfer A. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared. Applied Physics Letters, 2004, 85(16): 3360–3362
CrossRef Google scholar
[96]
Reimann K, Smith R P, Weiner A M, Elsaesser T, Woerner M. Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter. Optics Letters, 2003, 28(6): 471–473
CrossRef Pubmed Google scholar
[97]
Schall M, Helm H, Keiding S R. Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy. International Journal of Infrared and Millimeter Waves, 1999, 20(4): 595–604
CrossRef Google scholar
[98]
Sharma G, Singh K, Al-Naib I, Morandotti R, Ozaki T. Terahertz detection using spectral domain interferometry. Optics Letters, 2012, 37(20): 4338–4340
CrossRef Pubmed Google scholar
[99]
Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903
CrossRef Pubmed Google scholar
[100]
Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131
CrossRef Google scholar
[101]
Ho I C, Guo X, Zhang X C. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Optics Express, 2010, 18(3): 2872–2883
CrossRef Pubmed Google scholar
[102]
Liu J, Zhang X C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103(23): 235002
CrossRef Pubmed Google scholar
[103]
Liu J L, Zhang X C. Plasma characterization using terahertz-wave-enhanced fluorescence. Applied Physics Letters, 2010, 96(4): 041505
CrossRef Google scholar
[104]
Liu J L, Dai J M, Chin S L, Zhang X C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631
CrossRef Google scholar
[105]
Clough B, Liu J, Zhang X C. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters, 2010, 35(21): 3544–3546
CrossRef Pubmed Google scholar
[106]
Turchinovich D, Hvam J M, Hoffmann M C. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor. Physical Review B, 2012, 85(20): 201304
CrossRef Google scholar
[107]
Paul M, Chang Y, Thompson Z, Stickel A, Wardini J, Choi H, Minot E, Hou B, Nees J, Norris T, Lee Y. High-field terahertz response of graphene. New Journal of Physics, 2013, 15(8): 085019
CrossRef Google scholar
[108]
Bowlan P, Martinez-Moreno E, Reimann K, Elsaesser T, Woerner M. Ultrafast terahertz response of multilayer graphene in the nonperturbative regime. Physical Review B, 2014, 89(4): 041408
CrossRef Google scholar
[109]
Melnik M, Vorontsova I, Putilin S, Tcypkin A, Kozlov S. Methodical inaccuracy of the Z-scan method for few-cycle terahertz pulses. Scientific Reports, 2019, 9(1): 9146
CrossRef Pubmed Google scholar
[110]
Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S, Huber R. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics, 2014, 8(2): 119–123
CrossRef Google scholar
[111]
Hafez H A, Kovalev S, Deinert J C, Mics Z, Green B, Awari N, Chen M, Germanskiy S, Lehnert U, Teichert J, Wang Z, Tielrooij K J, Liu Z, Chen Z, Narita A, Müllen K, Bonn M, Gensch M, Turchinovich D. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature, 2018, 561(7724): 507–511
CrossRef Pubmed Google scholar
[112]
Bahk Y M, Kang B J, Kim Y S, Kim J Y, Kim W T, Kim T Y, Kang T, Rhie J, Han S, Park C H, Rotermund F, Kim D S. Electromagnetic saturation of angstrom-sized quantum barriers at terahertz frequencies. Physical Review Letters, 2015, 115(12): 125501
CrossRef Pubmed Google scholar
[113]
Jadidi M M, König-Otto J C, Winnerl S, Sushkov A B, Drew H D, Murphy T E, Mittendorff M. Nonlinear terahertz absorption of graphene plasmons. Nano Letters, 2016, 16(4): 2734–2738
CrossRef Pubmed Google scholar
[114]
Giorgianni F, Chiadroni E, Rovere A, Cestelli-Guidi M, Perucchi A, Bellaveglia M, Castellano M, Di Giovenale D, Di Pirro G, Ferrario M, Pompili R, Vaccarezza C, Villa F, Cianchi A, Mostacci A, Petrarca M, Brahlek M, Koirala N, Oh S, Lupi S. Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator. Nature Communications, 2016, 7(1): 11421
CrossRef Pubmed Google scholar
[115]
Vicario C, Shalaby M, Hauri C P. Subcycle extreme nonlinearities in GaP induced by an ultrastrong terahertz field. Physical Review Letters, 2017, 118(8): 083901
CrossRef Pubmed Google scholar
[116]
Chefonov O V, Ovchinnikov A V, Agranat M B, Fortov V E, Efimenko E S, Stepanov A N, Savel’ev A B. Nonlinear transfer of an intense few-cycle terahertz pulse through opaque n-doped Si. Physical Review B, 2018, 98(16): 165206
CrossRef Google scholar
[117]
Pashkin A, Sell A, Kampfrath T, Huber R. Electric and magnetic terahertz nonlinearities resolved on the sub-cycle scale. New Journal of Physics, 2013, 15(6): 065003
CrossRef Google scholar
[118]
Yamaguchi K, Nakajima M, Suemoto T. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Physical Review Letters, 2010, 105(23): 237201
CrossRef Pubmed Google scholar
[119]
Wang Z, Pietz M, Walowski J, Förster A, Lepsa M I, Münzenberg M. Spin dynamics triggered by subterahertz magnetic field pulses. Journal of Applied Physics, 2008, 103(12): 123905
CrossRef Google scholar
[120]
Beaurepaire E, Merle J, Daunois A, Bigot J. Ultrafast spin dynamics in ferromagnetic nickel. Physical Review Letters, 1996, 76(22): 4250–4253
CrossRef Pubmed Google scholar
[121]
Li X, Qiu T, Zhang J, Baldini E, Lu J, Rappe A M, Nelson K A. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science, 2019, 364(6445): 1079–1082
CrossRef Pubmed Google scholar
[122]
Razzari L, Su F, Sharma G, Blanchard F, Ayesheshim A, Bandulet H, Morandotti H, Kieffer J, Ozaki T, Reid M, Hegmann F. Nonlinear ultrafast modulation of the optical absorption of intense few-cycle terahertz pulses in n-doped semiconductors. Physical Review B, 2009, 79(19): 193204
CrossRef Google scholar
[123]
Kaur G, Han P, Zhang X. Terahertz induced nonlinear effects in doped Silicon observed by open-aperture Z-scan. In: Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves. Rome: IEEE, 2010, 5613068
[124]
Strait J H, Wang H, Shivaraman S, Shields V, Spencer M, Rana F. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Letters, 2011, 11(11): 4902–4906
CrossRef Pubmed Google scholar
[125]
Boubanga-Tombet S, Chan S, Watanabe T, Satou A, Ryzhii V, Otsuji T. Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature. Physical Review B, 2012, 85(3): 035443
CrossRef Google scholar
[126]
Docherty C J, Lin C T, Joyce H J, Nicholas R J, Herz L M, Li L J, Johnston M B. Extreme sensitivity of graphene photoconductivity to environmental gases. Nature Communications, 2012, 3(1): 1228
CrossRef Pubmed Google scholar
[127]
Jnawali G, Rao Y, Yan H, Heinz T F. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Letters, 2013, 13(2): 524–530
CrossRef Pubmed Google scholar
[128]
Tielrooij K J, Song J C W, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S, Koppens F H L. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Physics, 2013, 9(4): 248–252
CrossRef Google scholar
[129]
Wright A, Xu X, Cao J, Zhang C. Strong nonlinear optical response of graphene in the terahertz regime. Applied Physics Letters, 2009, 95(7): 072101
CrossRef Google scholar
[130]
Ishikawa K. Nonlinear optical response of graphene in time domain. Physical Review B, 2012, 85: 035443
[131]
Shareef S, Ang Y, Zhang C. Room-temperature strong terahertz photon mixing in graphene. Journal of the Optical Society of America B, Optical Physics, 2012, 29(3): 274–279
CrossRef Google scholar
[132]
Hafez H A, Al-Naib I, Oguri K, Sekine Y, Dignam M M, Ibrahim A, Cooke D G, Tanaka S, Komori F, Hibino H, Ozaki T. Nonlinear transmission of an intense terahertz field through monolayer graphene. AIP Advances, 2014, 4(11): 117118
CrossRef Google scholar
[133]
Su F H, Blanchard F, Sharma G, Razzari L, Ayesheshim A, Cocker T L, Titova L V, Ozaki T, Kieffer J C, Morandotti R, Reid M, Hegmann F A. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Optics Express, 2009, 17(12): 9620–9629
CrossRef Pubmed Google scholar
[134]
Hafez H, Al-Naib I, Dignam M, Sekine Y, Oguri K, Blanchard F, Cooke D, Tanaka S, Komori F, Hibino H, Ozaki T. Nonlinear terahertz field-induced carrier dynamics in photoexcited epitaxial monolayer graphene. Physical Review B, 2015, 91(3): 035422
CrossRef Google scholar
[135]
Hoffmann M, Hebling J, Hwang H, Yeh K, Nelson K. THz-pump/THz-probe spectroscopy of semiconductors at high field strengths. Journal of the Optical Society of America B, Optical Physics, 2009, 26(9): A29–A34
CrossRef Google scholar
[136]
Hebling J, Hoffmann M, Hwang H, Yeh K, Nelson K. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements. Physical Review B, 2010, 81(3): 035201
CrossRef Google scholar
[137]
Hoffmann M, Hebling J, Hwang H, Yeh K, Nelson K. Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy. Physical Review B, 2009, 79(16): 161201
CrossRef Google scholar
[138]
Hwang H Y, Brandt N C, Farhat H, Hsu A L, Kong J, Nelson K A. Nonlinear THz conductivity dynamics in P-type CVD-grown graphene. Journal of Physical Chemistry B, 2013, 117(49): 15819–15824
CrossRef Pubmed Google scholar
[139]
Sá J, Fernandes D L A, Pavliuk M V, Szlachetko J. Controlling dark catalysis with quasi half-cycle terahertz pulses. Catalysis Science & Technology, 2017, 7(5): 1050–1054
CrossRef Google scholar
[140]
Tani S, Blanchard F, Tanaka K. Ultrafast carrier dynamics in graphene under a high electric field. Physical Review Letters, 2012, 109(16): 166603
CrossRef Pubmed Google scholar
[141]
Reyna A S, de Araújo C B. High-order optical nonlinearities in plasmonic nanocomposites—a review. Advances in Optics and Photonics, 2017, 9(4): 720–724
CrossRef Google scholar
[142]
Reshef O, Giese E, Zahirul Alam M, De Leon I, Upham J, Boyd R W. Beyond the perturbative description of the nonlinear optical response of low-index materials. Optics Letters, 2017, 42(16): 3225–3228
CrossRef Pubmed Google scholar
[143]
Zhou R, Jin Z, Li G, Ma G, Cheng Z, Wang X. Terahertz magnetic field induced coherent spin precession in YFeO3. Applied Physics Letters, 2012, 100(6): 061102
CrossRef Google scholar

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFC1711905), the National Natural Science Foundation of China (Grant Nos. 11774243, 11774246, and 6167513), the Youth Innovative Research Team of Capital Normal University (No. 19530050146), the Capacity Building for Science & Technology Innovation Fundamental Scientific Research Funds (Nos. 19530050170 and 19530050180), and the Scientific Research Base Development Program of the Beijing Municipal Commission of Education.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(8048 KB)

Accesses

Citations

Detail

Sections
Recommended

/