Self-trapped excitons in two-dimensional perovskites

Junze LI, Haizhen WANG, Dehui LI

PDF(2027 KB)
PDF(2027 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (3) : 225-234. DOI: 10.1007/s12200-020-1051-x
REVIEW ARTICLE

Self-trapped excitons in two-dimensional perovskites

Author information +
History +

Abstract

With strong electron–phonon coupling, the self-trapped excitons are usually formed in materials, which leads to the local lattice distortion and localized excitons. The self-trapping strongly depends on the dimensionality of the materials. In the three-dimensional case, there is a potential barrier for self-trapping, whereas no such barrier is present for quasi-one-dimensional systems. Two-dimensional (2D) systems are marginal cases with a much lower potential barrier or nonexistent potential barrier for the self-trapping, leading to the easier formation of self-trapped states. Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap. 2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic. In particular, self-trapped excitons are present in 2D perovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron–phonon interaction. Here, we summarized the luminescence characteristics, origins, and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.

Graphical abstract

Keywords

self-trapped exciton (STE) / two-dimensional (2D) perovskites / broadband emission / electron–phonon coupling / optoelectronic applications

Cite this article

Download citation ▾
Junze LI, Haizhen WANG, Dehui LI. Self-trapped excitons in two-dimensional perovskites. Front. Optoelectron., 2020, 13(3): 225‒234 https://doi.org/10.1007/s12200-020-1051-x

References

[1]
Brenner T M, Egger D A, Kronik L, Hodes G, Cahen D. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials, 2016, 1(1): 15007
CrossRef Google scholar
[2]
Li W, Wang Z, Deschler F, Gao S, Friend R H, Cheetham A K. Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nature Reviews Materials, 2017, 2(3): 16099
CrossRef Google scholar
[3]
National Renewable Energy Laboratory. NREL efficiency chart. 2020
[4]
Wang Z, Shi Z, Li T, Chen Y, Huang W. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angewandte Chemie International Edition, 2017, 56(5): 1190–1212
CrossRef Pubmed Google scholar
[5]
Dou L. Emerging two-dimensional halide perovskite nanomaterials. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(43): 11165–11173
CrossRef Google scholar
[6]
Etgar L. The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite? Energy & Environmental Science, 2018, 11(2): 234–242
CrossRef Google scholar
[7]
Grancini G, Nazeeruddin M K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nature Reviews Materials, 2019, 4(1): 4–22
CrossRef Google scholar
[8]
Li J, Wang J, Zhang Y, Wang H, Lin G, Xiong X, Zhou W, Luo H, Li D. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Materials, 2018, 5(2): 021001
[9]
Fang C, Wang H, Shen Z, Shen H, Wang S, Ma J, Wang J, Luo H, Li D. High-performance photodetectors based on lead-free 2D Ruddlesden-Popper perovskite/MoS2 heterostructures. ACS Applied Materials & Interfaces, 2019, 11(8): 8419–8427
CrossRef Pubmed Google scholar
[10]
Ma J, Fang C, Chen C, Jin L, Wang J, Wang S, Tang J, Li D. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano, 2019, 13(3): 3659–3665
CrossRef Pubmed Google scholar
[11]
Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G. 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 2015, 137(24): 7843–7850
CrossRef Pubmed Google scholar
[12]
Smith M D, Connor B A, Karunadasa H I. Tuning the luminescence of layered halide perovskites. Chemical Reviews, 2019, 119(5): 3104–3139
CrossRef Pubmed Google scholar
[13]
Gao Y, Shi E, Deng S, Shiring S B, Snaider J M, Liang C, Yuan B, Song R, Janke S M, Liebman-Peláez A, Yoo P, Zeller M, Boudouris B W, Liao P, Zhu C, Blum V, Yu Y, Savoie B M, Huang L, Dou L. Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nature Chemistry, 2019, 11(12): 1151–1157
CrossRef Pubmed Google scholar
[14]
Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349(6255): 1518–1521
CrossRef Pubmed Google scholar
[15]
Straus D B, Kagan C R. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties. Journal of Physical Chemistry Letters, 2018, 9(6): 1434–1447
CrossRef Pubmed Google scholar
[16]
Blancon J C, Tsai H, Nie W, Stoumpos C C, Pedesseau L, Katan C, Kepenekian M, Soe C M, Appavoo K, Sfeir M Y, Tretiak S, Ajayan P M, Kanatzidis M G, Even J, Crochet J J, Mohite A D. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, 355(6331): 1288–1292
CrossRef Pubmed Google scholar
[17]
Chen Y, Sun Y, Peng J, Tang J, Zheng K, Liang Z. 2D Ruddlesden-Popper perovskites for optoelectronics. Advanced Materials, 2018, 30(2): 1703487
CrossRef Pubmed Google scholar
[18]
Wang J, Su R, Xing J, Bao D, Diederichs C, Liu S, Liew T C H, Chen Z, Xiong Q. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano, 2018, 12(8): 8382–8389
CrossRef Pubmed Google scholar
[19]
Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11(10): 872–877
CrossRef Pubmed Google scholar
[20]
Ha S T, Shen C, Zhang J, Xiong Q. Laser cooling of organic-inorganic lead halide perovskites. Nature Photonics, 2016, 10(2): 115–121
CrossRef Google scholar
[21]
Straus D B, Hurtado Parra S, Iotov N, Gebhardt J, Rappe A M, Subotnik J E, Kikkawa J M, Kagan C R. Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. Journal of the American Chemical Society, 2016, 138(42): 13798–13801
CrossRef Pubmed Google scholar
[22]
Li J, Wang J, Ma J, Shen H, Li L, Duan X, Li D. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nature Communications, 2019, 10(1): 806
CrossRef Pubmed Google scholar
[23]
Wu X, Trinh M T, Niesner D, Zhu H, Norman Z, Owen J S, Yaffe O, Kudisch B J, Zhu X Y. Trap states in lead iodide perovskites. Journal of the American Chemical Society, 2015, 137(5): 2089–2096
CrossRef Pubmed Google scholar
[24]
Cortecchia D, Neutzner S, Srimath Kandada A R, Mosconi E, Meggiolaro D, De Angelis F, Soci C, Petrozza A. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. Journal of the American Chemical Society, 2017, 139(1): 39–42
CrossRef Pubmed Google scholar
[25]
Dohner E R, Jaffe A, Bradshaw L R, Karunadasa H I. Intrinsic white-light emission from layered hybrid perovskites. Journal of the American Chemical Society, 2014, 136(38): 13154–13157
CrossRef Pubmed Google scholar
[26]
Mao L, Guo P, Kepenekian M, Hadar I, Katan C, Even J, Schaller R D, Stoumpos C C, Kanatzidis M G. Structural diversity in white-light-emitting hybrid lead bromide perovskites. Journal of the American Chemical Society, 2018, 140(40): 13078–13088
CrossRef Pubmed Google scholar
[27]
Mao L, Wu Y, Stoumpos C C, Wasielewski M R, Kanatzidis M G. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites. Journal of the American Chemical Society, 2017, 139(14): 5210–5215
CrossRef Pubmed Google scholar
[28]
Williams R T, Song K S. The self-trapped exciton. Journal of Physics and Chemistry of Solids, 1990, 51(7): 679–716
CrossRef Google scholar
[29]
Smith M D, Karunadasa H I. White-light emission from layered halide perovskites. Accounts of Chemical Research, 2018, 51(3): 619–627
CrossRef Pubmed Google scholar
[30]
Smith M D, Jaffe A, Dohner E R, Lindenberg A M, Karunadasa H I. Structural origins of broadband emission from layered Pb-Br hybrid perovskites. Chemical Science (Cambridge), 2017, 8(6): 4497–4504
CrossRef Pubmed Google scholar
[31]
Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials, 2016, 28(8): 2852–2867
CrossRef Google scholar
[32]
Wang S, Ma J, Li W, Wang J, Wang H, Shen H, Li J, Wang J, Luo H, Li D. Temperature-dependent band gap in two-dimensional perovskites: thermal expansion interaction and electron-phonon interaction. Journal of Physical Chemistry Letters, 2019, 10(10): 2546–2553
CrossRef Pubmed Google scholar
[33]
Blancon J C, Stier A V, Tsai H, Nie W, Stoumpos C C, Traoré B, Pedesseau L, Kepenekian M, Katsutani F, Noe G T, Kono J, Tretiak S, Crooker S A, Katan C, Kanatzidis M G, Crochet J J, Even J, Mohite A D. Scaling law for excitons in 2D perovskite quantum wells. Nature Communications, 2018, 9(1): 2254
CrossRef Pubmed Google scholar
[34]
Li J, Ma J, Cheng X, Liu Z, Chen Y, Li D. Anisotropy of excitons in two-dimensional perovskite crystals. ACS Nano, 2020, 14(2): 2156–2161
CrossRef Pubmed Google scholar
[35]
Yu J, Kong J, Hao W, Guo X, He H, Leow W R, Liu Z, Cai P, Qian G, Li S, Chen X, Chen X. Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites. Advanced Materials, 2019, 31(7): e1806385
Pubmed
[36]
Yangui A, Garrot D, Lauret J S, Lusson A, Bouchez G, Deleporte E, Pillet S, Bendeif E E, Castro M, Triki S, Abid Y, Boukheddaden K. Optical investigation of broadband white-light emission in self-assembled organic-inorganic perovskite (C6H11NH3)2PbBr4. Journal of Physical Chemistry C, 2015, 119(41): 23638–23647
CrossRef Google scholar
[37]
Zhou C, Lin H, Shi H, Tian Y, Pak C, Shatruk M, Zhou Y, Djurovich P, Du M H, Ma B. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly Stokes-shifted deep-red emission. Angewandte Chemie International Edition, 2018, 57(4): 1021–1024
CrossRef Pubmed Google scholar
[38]
Zhou G, Su B, Huang J, Zhang Q, Xia Z. Broad-band emission in metal halide perovskites: mechanism, materials, and applications. Materials Science and Engineering R Reports, 2020, 141(1): 100548
CrossRef Google scholar
[39]
Yuan Z, Zhou C, Tian Y, Shu Y, Messier J, Wang J C, van de Burgt L J, Kountouriotis K, Xin Y, Holt E, Schanze K, Clark R, Siegrist T, Ma B. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nature Communications, 2017, 8(1): 14051
CrossRef Pubmed Google scholar
[40]
Li X, Guo P, Kepenekian M, Hadar I, Katan C, Even J, Stoumpos C C, Schaller R D, Kanatzidis M G. Small cyclic diammonium cation templated (110)-oriented 2D halide (X= I, Br, Cl) perovskites with white-light emission. Chemistry of Materials, 2019, 31(9): 3582–3590
CrossRef Google scholar
[41]
Mao L, Wu Y, Stoumpos C C, Traore B, Katan C, Even J, Wasielewski M R, Kanatzidis M G. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10−xClx. Journal of the American Chemical Society, 2017, 139(34): 11956–11963
CrossRef Pubmed Google scholar
[42]
Gautier R, Paris M, Massuyeau F. Exciton self-trapping in hybrid lead halides: role of halogen. Journal of the American Chemical Society, 2019, 141(32): 12619–12623
CrossRef Pubmed Google scholar
[43]
Cortecchia D, Yin J, Bruno A, Lo S Z A, Gurzadyan G G, Mhaisalkar S, Brédas J L, Soci C. Polaron self-localization in white-light emitting hybrid perovskites. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(11): 2771–2780
CrossRef Google scholar
[44]
Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545
CrossRef Pubmed Google scholar
[45]
Li S, Luo J, Liu J, Tang J. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. Journal of Physical Chemistry Letters, 2019, 10(8): 1999–2007
CrossRef Pubmed Google scholar
[46]
Li L, Jin L, Zhou Y, Li J, Ma J, Wang S, Li W, Li D. Filterless polarization-sensitive 2D perovskite narrowband photodetectors. Advanced Optical Materials, 2019, 7(23): 1900988
CrossRef Google scholar

Acknowledgements

D. L. acknowledges the support from the National Basic Research Program of China (No. 2018YFA0704403), the National Natural Science Foundation of China (NSFC) (Grant No. 61674060), and Innovation Fund of Wuhan National Laboratory for Optoelectronics (WNLO).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2027 KB)

Accesses

Citations

Detail

Sections
Recommended

/