Possible top cells for next-generation Si-based tandem solar cells
Shuaicheng LU, Chao CHEN, Jiang TANG
Possible top cells for next-generation Si-based tandem solar cells
Si-based solar cells, which have the advantages of high efficiency, low manufacturing costs, and outstanding stability, are dominant in the photovoltaic market. Currently, state-of-the-art Si-based solar cells are approaching the practical limit of efficiency. Constructing Si-based tandem solar cells is one available pathway to break the theoretical efficiency limit of single-junction silicon solar cells. Various top cells have been explored recently in the construction of Si-based tandem devices. Nevertheless, many challenges still stand in the way of extensive commercial application of Si-based tandem solar cells. Herein, we summarize the recent progress of representative Si-based tandem solar cells with different top cells, such as III-V solar cells, wide-bandgap perovskite solar cells, cadmium telluride (CdTe)-related solar cells, Cu(In,Ga)(Se,S)2 (CIGS)-related solar cells, and amorphous silicon (a-Si) solar cells, and we analyze the main bottlenecks for their next steps of development. Subsequently, we suggest several potential candidate top cells for Si-based tandem devices, such as Sb2S3, Se, CdSe, and Cu2O. These materials have great potential for the development of high-performance and low-cost Si-based tandem solar cells in the future.
photovoltaic market / Si-based solar cell / efficiency limit / tandem / top cell
[1] |
BP p.l.c. BP Statistical Review of World Energy. UK. 2019, 51
|
[2] |
Fraunhofer Institute for Solar Energy Systems. Photovolatics Report. Germany. 2019, 21–45
|
[3] |
Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE Journal of Photovoltaics, 2013, 3(4): 1184–1191
CrossRef
Google scholar
|
[4] |
NREL. Best Research-Cell Efficiencies. 2020
|
[5] |
Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C. Photovoltaic materials: present efficiencies and future challenges. Science, 2016, 352(6283): aad4424
CrossRef
Pubmed
Google scholar
|
[6] |
Reese M O, Glynn S, Kempe M D, McGott D L, Dabney M S, Barnes T M, Booth S, Feldman D, Haegel N M. Increasing markets and decreasing package weight for high-specific-power photovoltaics. Nature Energy, 2018, 3(11): 1002–1012
CrossRef
Google scholar
|
[7] |
Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Ho-Baillie A W. Solar cell efficiency tables (Version 55). Progress in Photovoltaics: Research and Applications, 2020, 28(1): 3–15
CrossRef
Google scholar
|
[8] |
Yu Z S, Leilaeioun M, Holman Z. Selecting tandem partners for silicon solar cells. Nature Energy, 2016, 1(11): 16137
CrossRef
Google scholar
|
[9] |
Leijtens T, Bush K A, Prasanna R, McGehee M D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature Energy, 2018, 3(10): 828–838
CrossRef
Google scholar
|
[10] |
Bremner S, Levy M, Honsberg C B. Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Progress in Photovoltaics: Research and Applications, 2008, 16(3): 225–233
CrossRef
Google scholar
|
[11] |
Yamaguchi M, Lee K H, Araki K, Kojima N. A review of recent progress in heterogeneous silicon tandem solar cells. Journal of Physics D, Applied Physics, 2018, 51(13): 133002
CrossRef
Google scholar
|
[12] |
White T P, Lal N N, Catchpole K R. Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for>30% efficiency. IEEE Journal of Photovoltaics, 2014, 4(1): 208–214
CrossRef
Google scholar
|
[13] |
Kayes B M, Nie H, Twist R, Spruytte S G, Reinhardt F, Kizilyalli I C, Higashi G S. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In: Proceedings of the 37th IEEE Photovoltaic Specialists Conference. Seattle: IEEE, 2011, 000004–000008
|
[14] |
Geisz J F, Steiner M A, Jain N, Schulte K L, France R M, McMahon W E, Perl E E, Friedman D J. Building a six-junction inverted metamorphic concentrator solar cell. IEEE Journal of Photovoltaics, 2018, 8(2): 626–632
CrossRef
Google scholar
|
[15] |
Essig S, Allebé C, Remo T, Geisz J F, Steiner M A, Horowitz K, Barraud L, Ward J S, Schnabel M, Descoeudres A, Young D L, Woodhouse M, Despeisse M, Ballif C, Tamboli A. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nature Energy, 2017, 2(9): 17144
CrossRef
Google scholar
|
[16] |
Xu J, Boyd C C, Yu Z J, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, van Hest M F A M, Berry J J, Luther J M, Holman Z C, McGehee M D. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science, 2020, 367(6482): 1097–1104
CrossRef
Pubmed
Google scholar
|
[17] |
Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567(7749): 511–515
CrossRef
Pubmed
Google scholar
|
[18] |
Lal N N, Dkhissi Y, Li W, Hou Q, Cheng Y B, Bach U. Perovskite tandem solar cells. Advanced Energy Materials, 2017, 7(18): 1602761
CrossRef
Google scholar
|
[19] |
Grassman T J, Chmielewski D J, Carnevale S D, Carlin J A, Ringel S A. GaAs0.75P0.25/Si dual-junction solar cells grown by MBE and MOCVD. IEEE Journal of Photovoltaics, 2016, 6(1): 326–331
CrossRef
Google scholar
|
[20] |
Tanabe K, Watanabe K, Arakawa Y. III-V/Si hybrid photonic devices by direct fusion bonding. Scientific Reports, 2012, 2(1): 349
CrossRef
Pubmed
Google scholar
|
[21] |
Cariou R, Benick J, Feldmann F, Höhn O, Hauser H, Beutel P, Razek N, Wimplinger M, Bläsi B, Lackner D, Hermle M, Siefer G, Glunz S W, Bett A W, Dimroth F. III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nature Energy, 2018, 3(4): 326–333
CrossRef
Google scholar
|
[22] |
Feifel M, Lackner D, Ohlmann J, Benick J, Hermle M, Dimroth F. Direct growth of a GaInP/GaAs/Si triple-junction solar cell with 22.3% AM1.5G efficiency. Solar RRL, 2019, 3(12): 1900313
CrossRef
Google scholar
|
[23] |
Hou Y, Aydin E, De Bastiani M, Xiao C, Isikgor F H, Xue D J, Chen B, Chen H, Bahrami B, Chowdhury A H, Johnston A, Baek S W, Huang Z, Wei M, Dong Y, Troughton J, Jalmood R, Mirabelli A J, Allen T G, Van Kerschaver E, Saidaminov M I, Baran D, Qiao Q, Zhu K, De Wolf S, Sargent E H. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367(6482): 1135–1140
CrossRef
Pubmed
Google scholar
|
[24] |
Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Advanced Energy Materials, 2019, 9(14): 1803241
CrossRef
Google scholar
|
[25] |
Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 2018, 17(9): 820–826
CrossRef
Pubmed
Google scholar
|
[26] |
Jaysankar M, Raul B A, Bastos J, Burgess C, Weijtens C, Creatore M, Aernouts T, Kuang Y, Gehlhaar R, Hadipour A, Poortmans J. Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Letters, 2019, 4(1): 259–264
CrossRef
Google scholar
|
[27] |
Carmody M, Mallick S, Margetis J, Kodama R, Biegala T, Xu D, Bechmann P, Garland J, Sivananthan S. Single-crystal II–VI on Si single-junction and tandem solar cells. Applied Physics Letters, 2010, 96(15): 153502
CrossRef
Google scholar
|
[28] |
Sivananthan S, Garland J W, Carmody M W. Multijunction single-crystal CdTe-based solar cells: opportunities and challenges. In: Proceedings of Energy Harvesting and Storage: Materials, Devices, and Applications. Orlando: SPIE, 2010, 76830N
|
[29] |
Noufi R, Young D L, Coutts T J, Gessert T, Ward J S, Duda A, Wu X, Romero M, Dhere R, Shama J A. Toward a 25%-efficient polycrystalline thin-film tandem solar cell: practical issues. In: Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion. Osaka: IEEE, 2003, 12–14
|
[30] |
Jeong A R, Choi S B, Kim W M, Park J K, Choi J, Kim I, Jeong J H. Electrical analysis of c-Si/CGSe monolithic tandem solar cells by using a cell-selective light absorption scheme. Scientific Reports, 2017, 7(1): 15723
CrossRef
Pubmed
Google scholar
|
[31] |
Matsumoto Y, Miyagi K, Takakura H, Okamoto H, Hamakawa Y. a-Si/poly-Si two-and four-terminal tandem type solar cells. In: Proceedings of IEEE Conference on Photovoltaic Specialists. Kissimmee: IEEE, 1990, 1420–1425
|
[32] |
Shen H, Walter D, Wu Y, Fong K C, Jacobs D A, Duong T, Peng J, Weber K, White T P, Catchpole K R. Monolithic perovskite/Si tandem solar cells: pathways to over 30% efficiency. Advanced Energy Materials, 2020, 10(13): 1902840
CrossRef
Google scholar
|
[33] |
Todorov T, Gunawan O, Guha S. A road towards 25% efficiency and beyond: perovskite tandem solar cells. Molecular Systems Design & Engineering, 2016, 1(4): 370–376
CrossRef
Google scholar
|
[34] |
Scheer R, Schock H W. Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. Weinheim: John Wiley & Sons. 2011, 178
|
[35] |
Bosio A, Rosa G, Romeo N. Past, present and future of the thin film CdTe/CdS solar cells. Solar Energy, 2018, 175: 31–43
CrossRef
Google scholar
|
[36] |
Todorov T K, Bishop D M, Lee Y S. Materials perspectives for next-generation low-cost tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 180: 350–357
CrossRef
Google scholar
|
[37] |
Becker J J, Campbell C M, Tsai C, Zhao Y, Lassise M, Zhao X, Boccard M, Holman Z C, Zhang Y. Monocrystalline 1.7-eV-bandgap MgCdTe solar cell with 11.2% efficiency. IEEE Journal of Photovoltaics, 2018, 8(2): 581–586
CrossRef
Google scholar
|
[38] |
Swanson D E, Reich C, Abbas A, Shimpi T, Liu H, Ponce F A, Walls J M, Zhang Y H, Metzger W K, Sampath W S, Holman Z C. CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells. Journal of Applied Physics, 2018, 123(20): 203101
CrossRef
Google scholar
|
[39] |
Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H. Cd-Free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 2019, 9(6): 1863–1867
CrossRef
Google scholar
|
[40] |
Jordan D C, Kurtz S R. Photovoltaic degradation rates-an analytical review. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 12–29
CrossRef
Google scholar
|
[41] |
Yi J. New generation multijunction solar cells for achieving high efficiencies. Current Photovoltaic Research, 2018, 6(2): 31–38
|
[42] |
Ishizuka S, Yamada A, Fons P J, Shibata H, Niki S. Impact of a binary Ga2Se3 precursor on ternary CuGaSe2 thin-film and solar cell device properties. Applied Physics Letters, 2013, 103(14): 143903
CrossRef
Google scholar
|
[43] |
Hiroi H, Iwata Y, Adachi S, Sugimoto H, Yamada A. New world-record efficiency for pure-sulfide Cu(In,Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process. IEEE Journal of Photovoltaics, 2016, 6(3): 760–763
CrossRef
Google scholar
|
[44] |
Kondrotas R, Chen C, Tang J. Sb2S3 solar cells. Joule, 2018, 2(5): 857–878
CrossRef
Google scholar
|
[45] |
Sai H, Matsui T, Kumagai H, Matsubara K. Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond. Applied Physics Express, 2018, 11(2): 022301
CrossRef
Google scholar
|
[46] |
Navaraj W T, Yadav B K, Kumar A. Optoelectronic simulation and optimization of unconstrained four terminal amorphous silicon/crystalline silicon tandem solar cell. Journal of Computational Electronics, 2016, 15(1): 287–294
CrossRef
Google scholar
|
[47] |
Matsui T, Maejima K, Bidiville A, Sai H, Koida T, Suezaki T, Matsumoto M, Saito K, Yoshida I, Kondo M. High-efficiency thin-film silicon solar cells realized by integrating stable a-Si:H absorbers into improved device design. Japanese Journal of Applied Physics, 2015, 54(8S1): 08KB10
|
[48] |
Tiedje T. Band tail recombination limit to the output voltage of amorphous silicon solar cells. Applied Physics Letters, 1982, 40(7): 627–629
CrossRef
Google scholar
|
[49] |
Rühle S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar Energy, 2016, 130: 139–147
CrossRef
Google scholar
|
[50] |
Shockley W, Queisser H. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519
CrossRef
Google scholar
|
[51] |
Castro-Hermosa S, Yadav S K, Vesce L, Guidobaldi A, Reale A, Di Carlo A, Brown T M. Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. Journal of Physics D, Applied Physics, 2017, 50(3): 033001
CrossRef
Google scholar
|
[52] |
Owens C, Ferguson G M, Hermenau M, Voroshazi E, Galagan Y, Zimmermann B, Rösch R, Angmo D, Teran-Escobar G, Uhrich C, Andriessen R, Hoppe H, Würfel U, Lira-Cantu M, Krebs F C, Tanenbaum D M. Comparative indoor and outdoor degradation of organic photovoltaic cells via inter-laboratory collaboration. Polymers, 2015, 8(1): 1
CrossRef
Pubmed
Google scholar
|
[53] |
Choi Y C, Lee D U, Noh J H, Kim E K, Seok S I. Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Advanced Functional Materials, 2014, 24(23): 3587–3592
CrossRef
Google scholar
|
[54] |
Todorov T K, Singh S, Bishop D M, Gunawan O, Lee Y S, Gershon T S, Brew K W, Antunez P D, Haight R. Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material. Nature Communications, 2017, 8(1): 682
CrossRef
Pubmed
Google scholar
|
[55] |
Rickus E. Photovoltaic behaviour of CdSe thin film solar cells. In: Proceedings of the 4th EC Photovoltaic Solar Energy Conference. Dordrecht: Springer, 1982, 831–835
|
[56] |
Minami T, Nishi Y, Miyata T. Efficiency enhancement using a Zn1−xGex-O thin film as an n-type window layer in Cu2O-based heterojunction solar cells. Applied Physics Express, 2016, 9(5): 052301
CrossRef
Google scholar
|
[57] |
Wong L H, Zakutayev A, Major J D, Hao X, Walsh A, Todorov T K, Saucedo E. Emerging inorganic solar cell efficiency tables (Version 1). Journal of Physics: Energy, 2019, 1(3): 032001
CrossRef
Google scholar
|
[58] |
Minami T, Nishi Y, Miyata T. High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer. Applied Physics Express, 2013, 6(4): 044101
CrossRef
Google scholar
|
[59] |
Lei H, Chen J, Tan Z, Fang G. Review of recent progress in antimony chalcogenide-based solar cells: materials and devices. Solar RRL, 2019, 3(6): 1900026
CrossRef
Google scholar
|
[60] |
Mavlonov A, Razykov T, Raziq F, Gan J, Chantana J, Kawano Y, Nishimura T, Wei H, Zakutayev A, Minemoto T, Zu X, Li S, Qiao L. A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Solar Energy, 2020, 201: 227–246
CrossRef
Google scholar
|
[61] |
Han J, Wang S, Yang J, Guo S, Cao Q, Tang H, Pu X, Gao B, Li X. Solution-processed Sb2S3 planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 V achieved via surface passivation by a SbCl3 interface layer. ACS Applied Materials & Interfaces, 2020, 12(4): 4970–4979
CrossRef
Pubmed
Google scholar
|
[62] |
Jiang C H, Tang R F, Wang X M, Ju H X, Chen G L, Chen T. Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells. Solar RRL, 2019, 3(1): 1800272
CrossRef
Google scholar
|
[63] |
Wang L, Li D B, Li K, Chen C, Deng H X, Gao L, Zhao Y, Jiang F, Li L, Huang F, He Y, Song H, Niu G, Tang J. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nature Energy, 2017, 2(4): 17046
CrossRef
Google scholar
|
[64] |
Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D J, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9(6): 409–415
CrossRef
Google scholar
|
[65] |
Deng H, Zeng Y, Ishaq M, Yuan S, Zhang H, Yang X, Hou M, Farooq U, Huang J, Sun K, Webster R, Wu H, Chen Z, Yi F, Song H, Hao X, Tang J. Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells. Advanced Functional Materials, 2019, 29(31): 1901720
CrossRef
Google scholar
|
[66] |
Cao Y, Zhu X, Jiang J, Liu C, Zhou J, Ni J, Zhang J, Pang J. Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices. Solar Energy Materials and Solar Cells, 2020, 206: 110279
CrossRef
Google scholar
|
[67] |
Zhang J, Lian W, Yin Y, Wang X, Tang R, Qian C, Hao X, Zhu C, Chen T. All antimony chalcogenide tandem solar cell. Solar RRL, 2020, 4(4): 2000048
|
[68] |
Zhu M, Niu G, Tang J. Elemental Se: fundamentals and its optoelectronic applications. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2019, 7(8): 2199–2206
CrossRef
Google scholar
|
[69] |
Hadar I, Hu X, Luo Z Z, Dravid V P, Kanatzidis M G. Nonlinear band gap tunability in selenium tellurium alloys and its utilization in solar cells. ACS Energy Letters, 2019, 4(9): 2137–2143
CrossRef
Google scholar
|
[70] |
Bagheri B, Kottokkaran R, Poly L P, Sharikadze S, Reichert B, Noack M, Dalal V. Efficient heterojunction thin film CdSe solar cells deposited using thermal evaporation. In: Proceedings of the 46th IEEE Photovoltaic Specialists Conference (PVSC). Chicago: IEEE, 2019, 1822–1825
|
[71] |
Mahawela P, Jeedigunta S, Vakkalanka S, Ferekides C S, Morel D L. Transparent high-performance CDSE thin-film solar cells. Thin Solid Films, 2005, 480–481: 466–470
CrossRef
Google scholar
|
[72] |
Patel N G, Panchal C J, Makhija K K, Patel P G, Patel S S. Fabrication and characterization of ZnTe/CdSe thin film solar cells. Crystal Research and Technology, 1994, 29(2): 247–252
CrossRef
Google scholar
|
[73] |
Shenouda A Y, El Sayed E S M. Electrodeposition, characterization and photo electrochemical properties of CdSe and CdTe. Ain Shams Engineering Journal, 2015, 6(1): 341–346
CrossRef
Google scholar
|
[74] |
Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715
CrossRef
Google scholar
|
[75] |
Frese K W Jr. A high-efficiency single-crystal cdse photo-electrochemical solar-cell and an associated loss mechanism. Applied Physics Letters, 1982, 40(3): 275–277
CrossRef
Google scholar
|
[76] |
Giraldo S, Jehl Z, Placidi M, Izquierdo-Roca V, Pérez-Rodríguez A, Saucedo E. Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Advanced Materials, 2019, 31(16): 1806692
CrossRef
Pubmed
Google scholar
|
[77] |
Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee S W, Gordon R G, Buonassisi T. Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Advanced Materials, 2014, 26(27): 4704–4710
CrossRef
Pubmed
Google scholar
|
[78] |
Eisermann S, Kronenberger A, Laufer A, Bieber J, Haas G, Lautenschläger S, Homm G, Klar P J, Meyer B K. Copper oxide thin films by chemical vapor deposition: Synthesis, characterization and electrical properties. Physica Status Solidi (a), 2012, 209(3): 531–536
|
[79] |
Lee Y S, Heo J, Siah S C, Mailoa J P, Brandt R E, Kim S B, Gordon R G, Buonassisi T. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy & Environmental Science, 2013, 6(7): 2112–2118
CrossRef
Google scholar
|
/
〈 | 〉 |