
Composition engineering to obtain efficient hybrid perovskite light-emitting diodes
Chuanzhong YAN, Kebin LIN, Jianxun LU, Zhanhua WEI
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (3) : 282-290.
Composition engineering to obtain efficient hybrid perovskite light-emitting diodes
Metal halide perovskites have received considerable attention in the field of electroluminescence, and the external quantum efficiency of perovskite light-emitting diodes has exceeded 20%. CH3NH3PbBr3 has been intensely investigated as an emitting layer in perovskite light-emitting diodes. However, perovskite films comprising CH3NH3PbBr3 often exhibit low surface coverage and poor crystallinity, leading to high current leakage, severe nonradiative recombination, and limited device performance. Herein, we demonstrate a rationale for composition engineering to obtain high-quality perovskite films. We first reduce pinholes by adding excess CH3NH3Br to the actual CH3NH3PbBr3 films, and we then add CsBr to improve the crystalline quality and to passivate nonradiative defects. As a result, the (CH3NH3)1−xCsxPbBr3 based perovskite light-emitting diodes exhibit significantly improved external quantum and power efficiencies of 6.97% and 25.18 lm/W, respectively, representing an improvement in performance dozens of times greater than that of pristine CH3NH3PbBr3-based perovskite light-emitting diodes. Our study demonstrates that composition engineering is an effective strategy for enhancing the device performance of perovskite light-emitting diodes.
perovskite / light-emitting diode (LED) / composition engineering / ion doping
Fig.1 MABr additive enhances the perovskite film quality and the corresponding device performance. (a) Distribution of CE of the Pero-LEDs. (b) PL spectra of the perovskite films with inset of an image of perovskite films (1: MAPbBr3, 2: MAPbBr3-excess) under UV illumination (365 nm). SEM images of (c) MAPbBr3 and (d) MAPbBr3-excess perovskite films (pinholes are indicated by red circles). (e) XRD patterns of the perovskite films. (f) Current density–luminance–voltage (L–J–V) curves of the best-performing Pero-LEDs |
Fig.2 CsBr doping improves the film quality. (a) Schematic of crystal structure of the MAPbBr3 doped with CsBr. (b) PL spectra of the perovskite films, inset is an image of perovskite films (1: MAPbBr3-excess, 2: MAPbBr3-excess:CsBr= 1:0.4, 3: MAPbBr3-excess:CsBr= 1:0.8, 4: MAPbBr3-excess:CsBr= 1:1.2) under UV illumination (365 nm). (c) (αhn)2-photon energy (eV) curve of the perovskite films. (d) XRD patterns of the perovskite films. (e) Partially magnified XRD patterns showing (100) and (200) peaks |
Fig.4 Fabrication and performance evaluation of Pero-LEDs devices. (a) Schematic diagram of the Pero-LEDs devices. (b) Energy-level diagram of the Pero-LEDs devices. (c) J–V curves. (d) L–V curves. (e) Distribution of the CE of the Pero-LEDs fabricated with different perovskites. (f) Electroluminescence spectra at different driving voltages of the Pero-LEDs based on MAPbBr3-excess:CsBr = 1:0.8 |
Tab.1 EL parameters of the Pero-LEDs with different molar ratios of MAPbBr3-excess:CsBr |
molar ratio of MAPbBr3-excess:CsBr | Lmax/(cd·m−2) | CEmax/(cd·A−1) | EQEmax/% | Von/V | PEmax/(lm·W−1) |
---|---|---|---|---|---|
1:0 | 4452 | 2.46 | 0.63 | ~2.8 | 2.12 |
1:0.4 | 13,450 | 8.23 | 2.21 | ~2.6 | 6.06 |
1:0.8 | 15,059 | 25.80 | 6.97 | ~2.4 | 25.18 |
1:1.2 | 13,720 | 17.99 | 4.84 | ~2.4 | 14.13 |
[1] |
Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
CrossRef
Pubmed
Google scholar
|
[2] |
Song J, Li J, Li X, Xu L, Dong Y, Zeng H. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced Materials, 2015, 27(44): 7162–7167
CrossRef
Pubmed
Google scholar
|
[3] |
Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11(10): 872–877
CrossRef
Pubmed
Google scholar
|
[4] |
Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222–1225
CrossRef
Pubmed
Google scholar
|
[5] |
Wei Z, Perumal A, Su R, Sushant S, Xing J, Zhang Q, Tan S T, Demir H V, Xiong Q. Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes. Nanoscale, 2016, 8(42): 18021–18026
CrossRef
Pubmed
Google scholar
|
[6] |
Wei Z, Xing J. The rise of perovskite light-emitting diodes. Journal of Physical Chemistry Letters, 2019, 10(11): 3035–3042
CrossRef
Pubmed
Google scholar
|
[7] |
Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Advanced Materials, 2015, 27(14): 2311–2316
CrossRef
Pubmed
Google scholar
|
[8] |
Li G, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Advanced Materials, 2016, 28(18): 3528–3534
CrossRef
Pubmed
Google scholar
|
[9] |
Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699–704
CrossRef
Google scholar
|
[10] |
Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nature Photonics, 2017, 11(2): 108–115
CrossRef
Google scholar
|
[11] |
Zhang L, Yang X, Jiang Q, Wang P, Yin Z, Zhang X, Tan H, Yang Y M, Wei M, Sutherland B R, Sargent E H, You J. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8(1): 15640
CrossRef
Pubmed
Google scholar
|
[12] |
Wu Y, Wei C, Li X, Li Y, Qiu S, Shen W, Cai B, Sun Z, Yang D, Deng Z, Zeng H. In situ passivation of PbBr64– octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Letters, 2018, 3(9): 2030–2037
CrossRef
Google scholar
|
[13] |
Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z H, Xiong Q, Sargent E H. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nature Communications, 2018, 9(1): 3541
CrossRef
Pubmed
Google scholar
|
[14] |
Lu J, Feng W, Mei G, Sun J, Yan C, Zhang D, Lin K, Wu D, Wang K, Wei Z. Ultrathin PEDOT:PSS enables colorful and efficient perovskite light-emitting diodes. Advanced Science, 2020, 7(11): 2000689
CrossRef
Pubmed
Google scholar
|
[15] |
Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248
CrossRef
Pubmed
Google scholar
|
[16] |
Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12(11): 681–687
CrossRef
Google scholar
|
[17] |
Zhao X, Tan Z K. Large-area near-infrared perovskite light-emitting diodes. Nature Photonics, 2020, 14(4): 215–218
CrossRef
Google scholar
|
[18] |
Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249–253
CrossRef
Pubmed
Google scholar
|
[19] |
Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13(6): 418–424
CrossRef
Google scholar
|
[20] |
Meredith P, Armin A. LED technology breaks performance barrier. Nature, 2018, 562(7726): 197–198
CrossRef
Pubmed
Google scholar
|
[21] |
Service R F. Perovskite LEDs begin to shine. Science, 2019, 364(6444): 918
CrossRef
Pubmed
Google scholar
|
[22] |
Quan L N, García de Arquer F P, Sabatini R P, Sargent E H. Perovskites for light emission. Advanced Materials, 2018, 30(45): 1801996
CrossRef
Pubmed
Google scholar
|
[23] |
Xie L, Song P, Shen L, Lu J, Liu K, Lin K, Feng W, Tian C, Wei Z. Revealing the compositional effect on the intrinsic long-term stability of perovskite solar cells. Journal of Materials Chemistry A, 2020, 8(16): 7653–7658
CrossRef
Google scholar
|
[24] |
Kanwat A, Choi W C, Seth S, Jang J. Doping and photon induced defect healing of hybrid perovskite thin films: an approach towards efficient light emitting diodes. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2019, 5(5): 666–673
CrossRef
Google scholar
|
[25] |
Xu Z, Liu Z, Li N, Tang G, Zheng G, Zhu C, Chen Y, Wang L, Huang Y, Li L, Zhou N, Hong J, Chen Q, Zhou H. A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells. Advanced Materials, 2019, 31(24): 1900390
CrossRef
Pubmed
Google scholar
|
[26] |
Si J, Liu Y, Wang N, Xu M, Li J, He H, Wang J, Jin Y. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Research, 2017, 10(4): 1329–1335
CrossRef
Google scholar
|
[27] |
Yang X, Chu Z, Meng J, Yin Z, Zhang X, Deng J, You J. Effects of organic cations on the structure and performance of quasi-two-dimensional perovskite based light-emitting diodes. Journal of Physical Chemistry Letters, 2019, 10(11): 2892–2897
CrossRef
Pubmed
Google scholar
|
[28] |
Prakasam V, Di Giacomo F, Abbel R, Tordera D, Sessolo M, Gelinck G, Bolink H J. Efficient perovskite light-emitting diodes: Effect of composition, morphology, and transport layers. ACS Applied Materials & Interfaces, 2018, 10(48): 41586–41591
CrossRef
Pubmed
Google scholar
|
[29] |
Naphade R, Zhao B, Richter J M, Booker E, Krishnamurthy S, Friend R H, Sadhanala A, Ogale S. High quality hybrid perovskite semiconductor thin films with remarkably enhanced luminescence and defect suppression via quaternary alkyl ammonium salt based treatment. Advanced Materials Interfaces, 2017, 4(19): 1700562
CrossRef
Google scholar
|
[30] |
Prasanna R, Gold-Parker A, Leijtens T, Conings B, Babayigit A, Boyen H G, Toney M F, McGehee M D. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. Journal of the American Chemical Society, 2017, 139(32): 11117–11124
CrossRef
Pubmed
Google scholar
|
[31] |
Xie L, Lin K, Lu J, Feng W, Song P, Yan C, Liu K, Shen L, Tian C, Wei Z. Efficient and stable low-bandgap perovskite solar cells enabled by a CsPbBr3-cluster assisted bottom-up crystallization approach. Journal of the American Chemical Society, 2019, 141(51): 20537–20546
CrossRef
Pubmed
Google scholar
|
[32] |
Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H, Seok S I. Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide. Science, 2019, 366(6466): 749–753
CrossRef
Pubmed
Google scholar
|
Part of a collection:
Halide Perovskites: From Materials to Optoelectronic Devices
/
〈 |
|
〉 |