Focus on performance of perovskite light-emitting diodes

Peipei DU, Liang GAO, Jiang TANG

PDF(2809 KB)
PDF(2809 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (3) : 235-245. DOI: 10.1007/s12200-020-1042-y
REVIEW ARTICLE
REVIEW ARTICLE

Focus on performance of perovskite light-emitting diodes

Author information +
History +

Abstract

Perovskite-based optoelectronic devices, especially perovskite light-emitting diodes (PeLEDs) and perovskite solar cells, have recently attracted considerable attention. The National Renewable Energy Laboratory (NREL) chart inspires us to develop a counterpart for PeLEDs. In this study, we collect the record performance of PeLEDs including several new entries to address their latest external quantum efficiency (EQE), highest luminance, and stability status. We hope that these performance tables and future updated versions will show the frontiers of PeLEDs, assist researchers in capturing the overview of this field, identify the remaining challenges, and predict the promising research directions.

Graphical abstract

Keywords

metal halide perovskite / light-emitting diode (LED) / performance table

Cite this article

Download citation ▾
Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes. Front. Optoelectron., 2020, 13(3): 235‒245 https://doi.org/10.1007/s12200-020-1042-y

References

[1]
Lee T W. Emerging halide perovskite materials and devices for optoelectronics. Advanced Materials, 2019, 31(47): e1905077
CrossRef Pubmed Google scholar
[2]
Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249–253
CrossRef Pubmed Google scholar
[3]
Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248
CrossRef Pubmed Google scholar
[4]
Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
CrossRef Pubmed Google scholar
[5]
Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12(11): 681–687
CrossRef Google scholar
[6]
Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y, Huang J. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nature Communications, 2019, 10(1): 5633
CrossRef Pubmed Google scholar
[7]
Liu Y, Cui J, Du K, Tian H, He Z, Zhou Q, Yang Z, Deng Y, Chen D, Zuo X, Ren Y, Wang L, Zhu H, Zhao B, Di D, Wang J, Friend R H, Jin Y. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nature Photonics, 2019, 13(11): 760–764
CrossRef Google scholar
[8]
Meredith P, Armin A. LED technology breaks performance barrier. Nature, 2018, 562(7726): 197–198
CrossRef Pubmed Google scholar
[9]
Anaya M, Rand B P, Holmes R J, Credgington D, Bolink H J, Friend R H, Wang J, Greenham N C, Stranks S D. Best practices for measuring emerging light-emitting diode technologies. Nature Photonics, 2019, 13(12): 818–821
CrossRef Google scholar
[10]
Li J, Du P, Li S, Liu J, Zhu M, Tan Z, Hu M, Luo J, Guo D, Ma L, Nie Z, Ma Y, Gao L, Niu G, Tang J. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Advanced Functional Materials, 2019, 29(51): 1903607
CrossRef Google scholar
[11]
Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5. Nature Communications, 2019, 10(1): 1027
CrossRef Pubmed Google scholar
[12]
Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E. High efficiency blue and green light-emitting diodes using ruddlesden–popper inorganic mixed halide perovskites with butylammonium interlayers. Chemistry of Materials, 2019, 31(1): 83–89
CrossRef Google scholar
[13]
Ma D, Todorović P, Meshkat S, Saidaminov M I, Wang Y K, Chen B, Li P, Scheffel B, Quintero-Bermudez R, Fan J Z, Dong Y, Sun B, Xu C, Zhou C, Hou Y, Li X, Kang Y, Voznyy O, Lu Z H, Ban D, Sargent E H. Chloride insertion–immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. Journal of the American Chemical Society, 2020, 142(11): 5126–5134
CrossRef Pubmed Google scholar
[14]
Yuan F, Ran C, Zhang L, Dong H, Jiao B, Hou X, Li J, Wu Z. A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes. ACS Energy Letters, 2020, 5(4): 1062–1069
CrossRef Google scholar
[15]
Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J. Spectra stable blue perovskite light-emitting diodes. Nature Communications, 2019, 10(1): 1868
CrossRef Pubmed Google scholar
[16]
Yao J, Wang L, Wang K, Yin Y, Yang J, Zhang Q, Yao H. Calcium-tributylphosphine oxide passivation enables the efficiency of pure-blue perovskite light-emitting diode up to 3.3%. Science Bulletin, 2020, doi:10.1016/j.scib.2020.03.036
[17]
Yuan S, Wang Z K, Xiao L X, Zhang C F, Yang S Y, Chen B B, Ge H T, Tian Q S, Jin Y, Liao L S. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Advanced Materials, 2019, 31(44): e1904319
CrossRef Pubmed Google scholar
[18]
Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Advanced Materials, 2019, 31(24): e1901517
CrossRef Pubmed Google scholar
[19]
Shen Y, Li M N, Li Y, Xie F M, Wu H Y, Zhang G H, Chen L, Lee S T, Tang J X. Rational interface engineering for efficient flexible perovskite light-emitting diodes. ACS Nano, 2020, acsnano.0c01908
CrossRef Pubmed Google scholar
[20]
Park M H, Park J, Lee J, So H S, Kim H, Jeong S H, Han T H, Wolf C, Lee H, Yoo S, Lee T W. Efficient perovskite light-emitting diodes using polycrystalline core–shell-mimicked nanograins. Advanced Functional Materials, 2019, 29(22): 1902017
CrossRef Google scholar
[21]
Wang H, Zhang X, Wu Q, Cao F, Yang D, Shang Y, Ning Z, Zhang W, Zheng W, Yan Y, Kershaw S V, Zhang L, Rogach A L, Yang X. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nature Communications, 2019, 10(1): 665
CrossRef Pubmed Google scholar
[22]
Wu C, Zou Y, Wu T, Ban M, Pecunia V, Han Y, Liu Q, Song T, Duhm S, Sun B. Improved performance and stability of all-inorganic perovskite light-emitting diodes by antisolvent vapor treatment. Advanced Functional Materials, 2017, 27(28): 1700338
CrossRef Google scholar
[23]
Zou C, Liu Y, Ginger D S, Lin L Y. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano, 2020, acsnano.0c01817
CrossRef Pubmed Google scholar
[24]
Sim K, Jun T, Bang J, Kamioka H, Kim J, Hiramatsu H, Hosono H. Performance boosting strategy for perovskite light-emitting diodes. Applied Physics Reviews, 2019, 6(3): 031402
CrossRef Google scholar
[25]
Fang Z, Chen W, Shi Y, Zhao J, Chu S, Zhang J, Xiao Z. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20%. Advanced Functional Materials, 2020, 30(12): 1909754
CrossRef Google scholar
[26]
Cai W, Chen Z, Li Z, Yan L, Zhang D, Liu L, Xu Q H, Ma Y, Huang F, Yip H L, Cao Y. Polymer-assisted in situ growth of all-inorganic perovskite nanocrystal film for efficient and stable pure-red light-emitting devices. ACS Applied Materials & Interfaces, 2018, 10(49): 42564–42572
CrossRef Pubmed Google scholar
[27]
Lu M, Guo J, Sun S, Lu P, Wu J, Wang Y, Kershaw S V, Yu W W, Rogach A L, Zhang Y. Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification. Nano Letters, 2020, 20(4): 2829–2836
CrossRef Pubmed Google scholar
[28]
Cheng G, Liu Y, Chen T, Chen W, Fang Z, Zhang J, Ding L, Li X, Shi T, Xiao Z. Efficient all-inorganic perovskite light-emitting diodes with improved operation stability. ACS Applied Materials & Interfaces, 2020, 12(15): 18084–18090
CrossRef Pubmed Google scholar
[29]
Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13(6): 418–424
CrossRef Google scholar
[30]
Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J, Wang J, Greenham N C, Friend R H, Di D. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 2018, 12(12): 783–789
CrossRef Google scholar
[31]
Zhao X, Tan Z K. Large-area near-infrared perovskite light-emitting diodes. Nature Photonics, 2020, 14(4): 215–218
CrossRef Google scholar
[32]
Han T H, Lee J W, Choi Y J, Choi C, Tan S, Lee S J, Zhao Y, Huang Y, Kim D, Yang Y. Surface-2D/bulk-3D heterophased perovskite nanograins for long-term-stable light-emitting diodes. Advanced Materials, 2020, 32(1): e1905674
CrossRef Pubmed Google scholar
[33]
Du P, Li J, Wang L, Liu J, Li S, Liu N, Li Y, Zhang M, Gao L, Ma Y, Tang J. Vacuum-deposited blue inorganic perovskite light-emitting diodes. ACS Applied Materials & Interfaces, 2019, 11(50): 47083–47090
CrossRef Pubmed Google scholar
[34]
Leyden M R, Meng L, Jiang Y, Ono L K, Qiu L, Juarez-Perez E J, Qin C, Adachi C, Qi Y. Methylammonium lead bromide perovskite light-emitting diodes by chemical vapor deposition. Journal of Physical Chemistry Letters, 2017, 8(14): 3193–3198
CrossRef Pubmed Google scholar
[35]
Hu Y, Wang Q, Shi Y L, Li M, Zhang L, Wang Z K, Liao L S. Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(32): 8144–8149
CrossRef Google scholar
[36]
Chiang K M, Hsu B W, Chang Y A, Yang L, Tsai W L, Lin H W. Vacuum-deposited organometallic halide perovskite light-emitting devices. ACS Applied Materials & Interfaces, 2017, 9(46): 40516–40522
CrossRef Pubmed Google scholar
[37]
Zhuang S, Ma X, Hu D, Dong X, Zhang B. Air-stable all inorganic green perovskite light emitting diodes based on ZnO/CsPbBr3/NiO heterojunction structure. Ceramics International, 2018, 44(5): 4685–4688
CrossRef Google scholar
[38]
Shi Z, Lei L, Li Y, Zhang F, Ma Z, Li X, Wu D, Xu T, Tian Y, Zhang B, Yao Z, Du G. Hole-injection layer-free perovskite light-emitting diodes. ACS Applied Materials & Interfaces, 2018, 10(38): 32289–32297
CrossRef Pubmed Google scholar
[39]
Lian X, Wang X, Ling Y, Lochner E, Tan L, Zhou Y, Ma B, Hanson K, Gao H. Light emitting diodes based on inorganic composite halide perovskites. Advanced Functional Materials, 2019, 29(5): 1807345
[40]
Tan Y, Li R, Xu H, Qin Y, Song T, Sun B. Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Advanced Functional Materials, 2019, 29(23): 1900730
CrossRef Google scholar
[41]
Shin M, Lee H S, Sim Y C, Cho Y H, Cheol Choi K, Shin B. Modulation of growth kinetics of vacuum-deposited CsPbBr3 films for efficient light-emitting diodes. ACS Applied Materials & Interfaces, 2020, 12(1): 1944–1952
CrossRef Pubmed Google scholar
[42]
Jia K, Song L, Hu Y, Guo X, Liu X, Geng C, Xu S, Fan R, Huang L, Luan N, Bi W. Improved performance for thermally evaporated perovskite light-emitting devices via defect passivation and carrier regulation. ACS Applied Materials & Interfaces, 2020, 12(13): 15928–15933
CrossRef Pubmed Google scholar
[43]
Yuan F, Xi J, Dong H, Xi K, Zhang W, Ran C, Jiao B, Hou X, Jen A K Y, Wu Z. All-inorganic hetero-structured cesium tin halide perovskite light-emitting diodes with current density over 900 A·cm−2 and its amplified spontaneous emission behaviors. Physica Status Solidi (RRL)–Rapid Research Letters, 2018, 12(5): 1800090
CrossRef Google scholar
[44]
Gil-Escrig L, Miquel-Sempere A, Sessolo M, Bolink H J. Mixed iodide–bromide methylammonium lead perovskite-based diodes for light emission and photovoltaics. Journal of Physical Chemistry Letters, 2015, 6(18): 3743–3748
CrossRef Pubmed Google scholar
[45]
Dänekamp B, Droseros N, Palazon F, Sessolo M, Banerji N, Bolink H J. Efficient photo- and electroluminescence by trap states passivation in vacuum-deposited hybrid perovskite thin films. ACS Applied Materials & Interfaces, 2018, 10(42): 36187–36193
CrossRef Pubmed Google scholar
[46]
Leng M, Yang Y, Chen Z, Gao W, Zhang J, Niu G, Li D, Song H, Zhang J, Jin S, Tang J. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Letters, 2018, 18(9): 6076–6083
CrossRef Pubmed Google scholar
[47]
Leng M, Yang Y, Zeng K, Chen Z, Tan Z, Li S, Li J, Xu B, Li D, Hautzinger M P, Fu Y, Zhai T, Xu L, Niu G, Jin S, Tang J. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28(1): 1704446
[48]
Tan Z, Li J, Zhang C, Li Z, Hu Q, Xiao Z, Kamiya T, Hosono H, Niu G, Lifshitz E, Cheng Y, Tang J. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Advanced Functional Materials, 2018, 28(29): 1801131
CrossRef Google scholar
[49]
Hu Q, Deng Z, Hu M, Zhao A, Zhang Y, Tan Z, Niu G, Wu H, Tang J. X-ray scintillation in lead-free double perovskite crystals. Science China, Chemistry, 2018, 61(12): 1581–1586
CrossRef Google scholar
[50]
Zhou C, Tian Y, Yuan Z, Lin H, Chen B, Clark R, Dilbeck T, Zhou Y, Hurley J, Neu J, Besara T, Siegrist T, Djurovich P, Ma B. Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite. ACS Applied Materials & Interfaces, 2017, 9(51): 44579–44583
CrossRef Pubmed Google scholar
[51]
Lai M L, Tay T Y S, Sadhanala A, Dutton S E, Li G, Friend R H, Tan Z K. Tunable near-infrared luminescence in tin-halide perovskite devices. Journal of Physical Chemistry Letters, 2016, 7(14): 2653–2658
CrossRef Pubmed Google scholar
[52]
Hong W L, Huang Y C, Chang C Y, Zhang Z C, Tsai H R, Chang N Y, Chao Y C. Efficient low-temperature solution-processed lead-free perovskite infrared light-emitting diodes. Advanced Materials, 2016, 28(36): 8029–8036
CrossRef Pubmed Google scholar
[53]
Lanzetta L, Marin-Beloqui J M, Sanchez-Molina I, Ding D, Haque S A. Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices. ACS Energy Letters, 2017, 2(7): 1662–1668
CrossRef Google scholar
[54]
Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Advanced Materials, 2018, 30(43): e1804547
CrossRef Pubmed Google scholar
[55]
Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545
CrossRef Pubmed Google scholar
[56]
Zhang X, Wang C, Zhang Y, Zhang X, Wang S, Lu M, Cui H, Kershaw S V, Yu W W, Rogach A L. Bright orange electroluminescence from lead-free two-dimensional perovskites. ACS Energy Letters, 2019, 4(1): 242–248
CrossRef Google scholar
[57]
Singh A, Chiu N C, Boopathi K M, Lu Y J, Mohapatra A, Li G, Chen Y F, Guo T F, Chu C W. Lead-free antimony-based light-emitting diodes through the vapor–anion-exchange method. ACS Applied Materials & Interfaces, 2019, 11(38): 35088–35094
CrossRef Pubmed Google scholar
[58]
Ma Z, Shi Z, Yang D, Zhang F, Li S, Wang L, Wu D, Zhang Y, Na G, Zhang L, Li X, Zhang Y, Shan C. Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Letters, 2020, 5(2): 385–394
CrossRef Google scholar
[59]
Liang H, Yuan F, Johnston A, Gao C, Choubisa H, Gao Y, Wang Y K, Sagar L K, Sun B, Li P, Bappi G, Chen B, Li J, Wang Y, Dong Y, Ma D, Gao Y, Liu Y, Yuan M, Saidaminov M I, Hoogland S, Lu Z H, Sargent E H. High color purity lead-free perovskite light-emitting diodes via Sn stabilization. Advancement of Science, 2020, 7(8): 1903213
CrossRef Pubmed Google scholar
[60]
Ma Z, Shi Z, Qin C, Cui M, Yang D, Wang X, Wang L, Ji X, Chen X, Sun J, Wu D, Zhang Y, Li X J, Zhang L, Shan C. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano, 2020, 14(4): 4475–4486
CrossRef Pubmed Google scholar
[61]
Wang L, Shi Z, Ma Z, Yang D, Zhang F, Ji X, Wang M, Chen X, Na G, Chen S, Wu D, Zhang Y, Li X, Zhang L, Shan C. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Letters, 2020, 20(5): 3568–3576
CrossRef Pubmed Google scholar
[62]
Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee T W, Sargent E H. Perovskites for next-generation optical sources. Chemical Reviews, 2019, 119(12): 7444–7477
CrossRef Pubmed Google scholar
[63]
Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A, Jang J, Nazeeruddin M K. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Advanced Optical Materials, 2017, 5(7): 1600920
CrossRef Google scholar
[64]
Wu C, Wu T, Yang Y, McLeod J A, Wang Y, Zou Y, Zhai T, Li J, Ban M, Song T, Gao X, Duhm S, Sirringhaus H, Sun B. Alternative type two-dimensional–three-dimensional lead halide perovskite with inorganic sodium ions as a spacer for high-performance light-emitting diodes. ACS Nano, 2019, 13(2): 1645–1654
CrossRef Pubmed Google scholar
[65]
Chen H, Fan L, Zhang R, Bao C, Zhao H, Xiang W, Liu W, Niu G, Guo R, Zhang L, Wang L. High-efficiency formamidinium lead bromide perovskite nanocrystal-based light-emitting diodes fabricated via a surface defect self-passivation strategy. Advanced Optical Materials, 2020, 8(6): 1901390
CrossRef Google scholar
[66]
He Z, Liu Y, Yang Z, Li J, Cui J, Chen D, Fang Z, He H, Ye Z, Zhu H, Wang N, Wang J, Jin Y. High-efficiency red light-emitting diodes based on multiple quantum wells of phenylbutylammonium-cesium lead iodide perovskites. ACS Photonics, 2019, 6(3): 587–594
CrossRef Google scholar
[67]
Xiao Z, Kerner R A, Tran N, Zhao L, Scholes G D, Rand B P. Engineering perovskite nanocrystal surface termination for light-emitting diodes with external quantum efficiency exceeding 15%. Advanced Functional Materials, 2019, 29(11): 1807284
CrossRef Google scholar
[68]
Deng W, Xu X, Zhang X, Zhang Y, Jin X, Wang L, Lee S T, Jie J. Organometal halide perovskite quantum dot light-emitting diodes. Advanced Functional Materials, 2016, 26(26): 4797–4802
CrossRef Google scholar
[69]
Na Quan L, Ma D, Zhao Y, Voznyy O, Yuan H, Bladt E, Pan J, García de Arquer F P, Sabatini R, Piontkowski Z, Emwas A H, Todorović P, Quintero-Bermudez R, Walters G, Fan J Z, Liu M, Tan H, Saidaminov M I, Gao L, Li Y, Anjum D H, Wei N, Tang J, McCamant D W, Roeffaers M B J, Bals S, Hofkens J, Bakr O M, Lu Z H, Sargent E H. Edge stabilization in reduced-dimensional perovskites. Nature Communications, 2020, 11(1): 170
CrossRef Pubmed Google scholar
[70]
Song J, Fang T, Li J, Xu L, Zhang F, Han B, Shan Q, Zeng H. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Advanced Materials, 2018, 30(50): e1805409
CrossRef Pubmed Google scholar
[71]
Tian Y, Zhou C, Worku M, Wang X, Ling Y, Gao H, Zhou Y, Miao Y, Guan J, Ma B. Highly efficient spectrally stable red perovskite light-emitting diodes. Advanced Materials, 2018, 30(20): e1707093
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFB070700702), the National Natural Science Foundation of China (Grant No. 51761145048), the Fundamental Research Funds for the Central Universities (HUST:2019421JYCXJJ004) and the Innovation Funds of Wuhan National Laboratory for Optoelectronics (WNLO).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2809 KB)

Accesses

Citations

Detail

Sections
Recommended

/