In vivo volumetric monitoring of revascularization of traumatized skin using extended depth-of-field photoacoustic microscopy

Zhongwen CHENG, Haigang MA, Zhiyang WANG, Sihua YANG

PDF(5603 KB)
PDF(5603 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (4) : 307-317. DOI: 10.1007/s12200-020-1040-0
RESEARCH ARTICLE

In vivo volumetric monitoring of revascularization of traumatized skin using extended depth-of-field photoacoustic microscopy

Author information +
History +

Abstract

Faster and better wound healing is a critical medical issue. Because the repair process of wounds is closely related to revascularization, accurate early assessment and postoperative monitoring are very important for establishing an optimal treatment plan. Herein, we present an extended depth-of-field photoacoustic microscopy system (E-DOF-PAM) that can achieve a constant spatial resolution and relatively uniform excitation efficiency over a long axial range. The superior performance of the system was verified by phantom and in vivo experiments. Furthermore, the system was applied to the imaging of normal and trauma sites of volunteers, and the experimental results accurately revealed the morphological differences between the normal and traumatized skin of the epidermis and dermis. These results demonstrated that the E-DOF-PAM is a powerful tool for observing and understanding the pathophysiology of cutaneous wound healing.

Graphical abstract

Keywords

photoacoustic microscopy (PAM) / extended depth-of-field / traumatized skin

Cite this article

Download citation ▾
Zhongwen CHENG, Haigang MA, Zhiyang WANG, Sihua YANG. In vivo volumetric monitoring of revascularization of traumatized skin using extended depth-of-field photoacoustic microscopy. Front. Optoelectron., 2020, 13(4): 307‒317 https://doi.org/10.1007/s12200-020-1040-0

References

[1]
Valvis S M, Waithman J, Wood F M, Fear M W, Fear V S. The immune response to skin trauma is dependent on the etiology of injury in a mouse model of burn and excision. Journal of Investigative Dermatology, 2015, 135(8): 2119–2128
CrossRef Pubmed Google scholar
[2]
Qin W, Li Y, Wang J, Qi X, Wang R K. In vivo monitoring of microcirculation in burn healing process with optical microangiography. Advances in Wound Care, 2016, 5(8): 332–337
CrossRef Pubmed Google scholar
[3]
Wang H, Shi L, Qin J, Yousefi S, Li Y, Wang R K. Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing. Lasers in Surgery and Medicine, 2014, 46(6): 470–478
CrossRef Pubmed Google scholar
[4]
Hoeksema H, Van de Sijpe K, Tondu T, Hamdi M, Van Landuyt K, Blondeel P, Monstrey S. Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Burns, 2009, 35(1): 36–45
CrossRef Pubmed Google scholar
[5]
Deegan A J, Wang W, Men S, Li Y, Song S, Xu J, Wang R K. Optical coherence tomography angiography monitors human cutaneous wound healing over time. Quantitative Imaging in Medicine and Surgery, 2018, 8(2): 135–150
CrossRef Pubmed Google scholar
[6]
Kumar I, Staton C A, Cross S S, Reed M W, Brown N J. Angiogenesis, vascular endothelial growth factor and its receptors in human surgical wounds. British Journal of Surgery, 2009, 96(12): 1484–1491
CrossRef Pubmed Google scholar
[7]
Wang N, Wei H, Jin Y, Chen L, Zhang Q, Deng X. Monitoring skin trauma healing in mice using second-harmonic generation combined with optical coherence tomography. IEEE Photonics Journal, 2017, 9(4): 1–12
CrossRef Google scholar
[8]
Atiyeh B S, Gunn S W, Hayek S N. State of the art in burn treatment. World Journal of Surgery, 2005, 29(2): 131–148
CrossRef Pubmed Google scholar
[9]
Still J M, Law E J, Klavuhn K G, Island T C, Holtz J Z. Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial. Burns, 2001, 27(4): 364–371
CrossRef Pubmed Google scholar
[10]
McUmber H, Dabek R J, Bojovic B, Driscoll D N. Burn depth analysis using indocyanine green fluorescence: a review. Journal of Burn Care & Research, 2019, 40(4): 513–516
CrossRef Pubmed Google scholar
[11]
Qin J, Jiang J, An L, Gareau D, Wang R K. In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography. Lasers in Surgery and Medicine, 2011, 43(2): 122–129
CrossRef Pubmed Google scholar
[12]
Burke-Smith A, Collier J, Jones I. A comparison of non-invasive imaging modalities: infrared thermography, spectrophotometric intracutaneous analysis and laser Doppler imaging for the assessment of adult burns. Burns, 2015, 41(8): 1695–1707
CrossRef Pubmed Google scholar
[13]
Pape S A, Skouras C A, Byrne P O. An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth. Burns, 2001, 27(3): 233–239
CrossRef Pubmed Google scholar
[14]
Pierce M C, Sheridan R L, Hyle Park B, Cense B, de Boer J F. Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. Burns, 2004, 30(6): 511–517
CrossRef Pubmed Google scholar
[15]
Jiao S, Yu W, Stoica G, Wang L V. Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging. Applied Optics, 2003, 42(25): 5191–5197
CrossRef Pubmed Google scholar
[16]
Schwarz M, Soliman D, Omar M, Buehler A, Ovsepian S V, Aguirre J, Ntziachristos V. Optoacoustic dermoscopy of the human skin: tuning excitation energy for optimal detection bandwidth with fast and deep imaging in vivo. IEEE Transactions on Medical Imaging, 2017, 36(6): 1287–1296
CrossRef Pubmed Google scholar
[17]
Liu W, Yao J. Photoacoustic microscopy: principles and biomedical applications. Biomedical Engineering Letters, 2018, 8(2): 203–213
CrossRef Pubmed Google scholar
[18]
Yao J, Wang L, Yang J M, Maslov K I, Wong T T, Li L, Huang C H, Zou J, Wang L V. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nature Methods, 2015, 12(5): 407–410
CrossRef Pubmed Google scholar
[19]
Yang J, Zhang G, Wu M, Shang Q, Huang L, Jiang H. Photoacoustic assessment of hemodynamic changes in foot vessels. Journal of Biophotonics, 2019, 12(6): e201900004
CrossRef Pubmed Google scholar
[20]
Ma H, Cheng Z, Wang Z, Xiong K, Yang S. Fast controllable confocal focus photoacoustic microscopy using a synchronous zoom opto-sono objective. Optics Letters, 2019, 44(7): 1880–1883
CrossRef Pubmed Google scholar
[21]
Xu D, Yang S, Wang Y, Gu Y, Xing D. Noninvasive and high-resolving photoacoustic dermoscopy of human skin. Biomedical Optics Express, 2016, 7(6): 2095–2102
CrossRef Pubmed Google scholar
[22]
Zhou W, Hu Y, Chen Z, Xing D. All-optical photoacoustic and reflectance confocal microscopy for melanoma characterization. Applied Physics Letters, 2019, 114(16): 163704
CrossRef Google scholar
[23]
Ma H, Cheng Z, Wang Z, Gu Y, Zhang T, Qiu H, Yang S. Fast linear confocal scanning photoacoustic dermoscopy for non-invasive assessment of chromatodermatosis. Applied Physics Letters, 2018, 113(8): 083704
CrossRef Google scholar
[24]
Li X, Dinish U S, Aguirre J, Bi R, Dev K, Attia A B E, Nitkunanantharajah S, Lim Q H, Schwarz M, Yew Y W, Thng S T G, Ntziachristos V, Olivo M. Optoacoustic mesoscopy analysis and quantitative estimation of specific imaging metrics in Fitzpatrick skin phototypes II to V. Journal of Biophotonics, 2019, 12(9): e201800442
CrossRef Pubmed Google scholar
[25]
Aguirre J, Schwarz M, Garzorz N, Omar M, Buehler A, Kilian Eyerich K, Ntziachristos V. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nature Biomedical Engineering, 2017, 1(5): 0068
[26]
Zhang W, Li Y, Nguyen V P, Huang Z, Liu Z, Wang X, Paulus Y M. High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization. Light, Science & Applications, 2018, 7(1): 103
CrossRef Pubmed Google scholar
[27]
Tian C, Zhang W, Mordovanakis A, Wang X, Paulus Y M. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography. Optics Express, 2017, 25(14): 15947–15955
CrossRef Pubmed Google scholar
[28]
Ma H, Xiong K, Wu J, Ji X, Yang S. Noncontact photoacoustic angiography with an air-coupled ultrasonic transducer for evaluation of burn injury. Applied Physics Letters, 2019, 114(13): 133701
CrossRef Google scholar
[29]
Yang J, Gong L, Xu X, Hai P, Shen Y, Suzuki Y, Wang L V. Motionless volumetric photoacoustic microscopy with spatially invariant resolution. Nature Communications, 2017, 8(1): 780
CrossRef Pubmed Google scholar
[30]
Hajireza P, Forbrich A, Zemp R J. Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration. Optics Letters, 2013, 38(15): 2711–2713
CrossRef Pubmed Google scholar
[31]
Li B, Qin H, Yang S, Xing D. In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens. Optics Express, 2014, 22(17): 20130–20137
CrossRef Pubmed Google scholar
[32]
Yeh C, Soetikno B, Hu S, Maslov K I, Wang L V. Microvascular quantification based on contour-scanning photoacoustic microscopy. Journal of Biomedical Optics, 2014, 19(9): 096011
CrossRef Pubmed Google scholar
[33]
Yang X, Jiang B, Song X, Wei J, Luo Q. Fast axial-scanning photoacoustic microscopy using tunable acoustic gradient lens. Optics Express, 2017, 25(7): 7349–7357
CrossRef Pubmed Google scholar
[34]
Yang X, Song X, Jiang B, Luo Q. Multifocus optical-resolution photoacoustic microscope using ultrafast axial scanning of single laser pulse. Optics Express, 2017, 25(23): 28192–28200
CrossRef Google scholar
[35]
Jiang B, Yang X, Luo Q. Reflection-mode Bessel-beam photoacoustic microscopy for in vivo imaging of cerebral capillaries. Optics Express, 2016, 24(18): 20167–20176
CrossRef Pubmed Google scholar
[36]
Chen B, Huang X, Gou D, Zeng J, Chen G, Pang M, Hu Y, Zhao Z, Zhang Y, Zhou Z, Wu H, Cheng H, Zhang Z, Xu C, Li Y, Chen L, Wang A. Rapid volumetric imaging with Bessel-beam three-photon microscopy. Biomedical Optics Express, 2018, 9(4): 1992–2000
CrossRef Pubmed Google scholar
[37]
Shi J, Wang L, Noordam C, Wang L V. Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field. Journal of Biomedical Optics, 2015, 20(11): 116002
CrossRef Pubmed Google scholar
[38]
Liu Z, Fulop G F, Flores A, Wang M R, Yang J J. Infrared imaging lens with extended depth of focus. In: Proceedings of SPIE Infrared Technology and Applications XXXI. Bellingham: SPIE, 2005, 841–848
[39]
Durnin J, Miceli J Jr, Eberly J H. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499–1501
CrossRef Pubmed Google scholar
[40]
Song W, Wu Y, Gao Y, Chen T, Zheng W, Fang H, Song L, Yuan X. Flexibly adjustable depth-of-focus photoacoustic microscopy with spatial light modulation. Applied Physics Letters, 2018, 113(16): 163502
CrossRef Google scholar
[41]
Flores A, Wang M R, Yang J J. Achromatic hybrid refractive-diffractive lens with extended depth of focus. Applied Optics, 2004, 43(30): 5618–5630
CrossRef Pubmed Google scholar
[42]
Li X, Xiong K, Yang S. Large-depth-of-field optical-resolution colorectal photoacoustic endoscope. Applied Physics Letters, 2019, 114(16): 163703
CrossRef Google scholar
[43]
Cheng Z, Ma H, Wang Z, Yang S. 3D depth-coded photoacoustic microscopy with a large field of view for human skin imaging. Chinese Optics Letters, 2018, 16(8): 081701
CrossRef Google scholar
[44]
Zhang W, Ma H, Cheng Z, Wang Z, Zhang L, Yang S. Miniaturized photoacoustic probe for in vivo imaging of subcutaneous microvessels within human skin. Quantitative Imaging in Medicine and Surgery, 2019, 9(5): 807–814
CrossRef Pubmed Google scholar
[45]
Chen Q, Guo H, Jin T, Qi W, Xie H, Xi L. Ultracompact high-resolution photoacoustic microscopy. Optics Letters, 2018, 43(7): 1615–1618
CrossRef Pubmed Google scholar
[46]
Wang H, Yang X, Liu Y, Jiang B, Luo Q. Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective. Optics Express, 2013, 21(20): 24210–24218
CrossRef Pubmed Google scholar
[47]
Matts P J, Dykes P J, Marks R. The distribution of melanin in skin determined in vivo. British Journal of Dermatology, 2007, 156(4): 620–628
CrossRef Pubmed Google scholar
[48]
Hu Y, Chen Z, Xiang L, Xing D. Extended depth-of-field all-optical photoacoustic microscopy with a dual non-diffracting Bessel beam. Optics Letters, 2019, 44(7): 1634–1637
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61822505, 11774101, 61627827, and 81630046), the Science and Technology Planning Project of Guangdong Province, China (No. 2015B020233016), and the Science and Technology Program of Guangzhou (No. 2019050001).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(5603 KB)

Accesses

Citations

Detail

Sections
Recommended

/