Dimensionality engineering of metal halide perovskites

Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT

PDF(4176 KB)
PDF(4176 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (3) : 196-224. DOI: 10.1007/s12200-020-1039-6
REVIEW ARTICLE
REVIEW ARTICLE

Dimensionality engineering of metal halide perovskites

Author information +
History +

Abstract

Metal halide perovskites are a class of materials that are ideal for photodetectors and solar cells due to their excellent optoelectronic properties. Their low-cost and low temperature synthesis have made them attractive for extensive research aimed at revolutionizing the semiconductor industry. The rich chemistry of metal halide perovskites allows compositional engineering resulting in facile tuning of the desired optoelectronic properties. Moreover, using different experimental synthesis and deposition techniques such as solution processing, chemical vapor deposition and hot-injection methods, the dimensionality of the perovskites can be altered from 3D to 0D, each structure opening a new realm of applications due to their unique properties. Dimensionality engineering includes both morphological engineering–reducing the thickness of 3D perovskite into atomically thin films–and molecular engineering–incorporating long-chain organic cations into the perovskite mixture and changing the composition at the molecular level. The optoelectronic properties of the perovskite structure including its band gap, binding energy and carrier mobility depend on both its composition and dimensionality. The plethora of different photodetectors and solar cells that have been made with different compositions and dimensions of perovskite will be reviewed here. We will conclude our review by discussing the kinetics and dynamics of different dimensionalities, their inherent stability and toxicity issues, and how reaching similar performance to 3D in lower dimensionalities and their large-scale deployment can be achieved.

Graphical abstract

Keywords

optoelectronics / solar cells / perovskite / photodetectors / metal halides / dimensionality

Cite this article

Download citation ▾
Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites. Front. Optoelectron., 2020, 13(3): 196‒224 https://doi.org/10.1007/s12200-020-1039-6

References

[1]
Manser J S, Christians J A, Kamat P V. Intriguing optoelectronic properties of metal halide perovskites. Chemical Reviews, 2016, 116(21): 12956–13008
CrossRef Pubmed Google scholar
[2]
Zhou C, Lin H, He Q, Xu L, Worku M, Chaaban M, Lee S, Shi X, Du M H, Ma B. Low dimensional metal halide perovskites and hybrids. Materials Science and Engineering R Reports, 2019, 137: 38–65
CrossRef Google scholar
[3]
Shi E, Gao Y, Finkenauer B P, Akriti, Coffey A H, Dou L. Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47(16): 6046–6072
CrossRef Pubmed Google scholar
[4]
Shi E, Dou L. A leap towards high-performance 2D perovskite photodetectors. Trends in Chemistry, 2019, 1(4): 365–367
CrossRef Google scholar
[5]
Ma S, Cai M, Cheng T, Ding X, Shi X, Alsaedi A, Hayat T, Ding Y, Tan Z, Dai S. Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Science China Materials, 2018, 61(10): 1257–1277
CrossRef Google scholar
[6]
Hong K, Van Le Q, Kim S Y, Jang H W. Low-dimensional halide perovskites: review and issues. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2018, 6(9): 2189–2209
CrossRef Google scholar
[7]
Chao L, Wang Z, Xia Y, Chen Y, Huang W. Recent progress on low dimensional perovskite solar cells. Journal of Energy Chemistry, 2018, 27(4): 1091–1100
CrossRef Google scholar
[8]
Park N G. Research direction toward scalable, stable, and high efficiency perovskite solar cells. Advanced Energy Materials, 2020, 10(13): 1903106
CrossRef Google scholar
[9]
Zhang J, Yang X, Deng H, Qiao K, Farooq U, Ishaq M, Yi F, Liu H, Tang J, Song H. Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Letters, 2017, 9(3): 36
CrossRef Pubmed Google scholar
[10]
Forgacs D, Wojciechowski K, Malinkiewicz O. Perovskite Photovoltaics: From Laboratory to Industry. In: Petrova-Koch V, Hezel R, Goetzberger A, eds. High-Efficient Low-Cost Photovoltaics. Cham: Springer, 2020, 219–255
[11]
McMeekin D P, Wang Z, Rehman W, Pulvirenti F, Patel J B, Noel N K, Johnston M B, Marder S R, Herz L M, Snaith H J. Crystallization kinetics and morphology control of formamidinium-cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Advanced Materials, 2017, 29(29): 1607039
CrossRef Pubmed Google scholar
[12]
Liu C, Cheng Y B, Ge Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 2020, 49(6): 1653–1687
CrossRef Pubmed Google scholar
[13]
Tyagi P, Arveson S M, Tisdale W A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. Journal of Physical Chemistry Letters, 2015, 6(10): 1911–1916
CrossRef Pubmed Google scholar
[14]
Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344
CrossRef Pubmed Google scholar
[15]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038
CrossRef Pubmed Google scholar
[16]
Edri E, Kirmayer S, Kulbak M, Hodes G, Cahen D. Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. Journal of Physical Chemistry Letters, 2014, 5(3): 429–433
CrossRef Pubmed Google scholar
[17]
Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 2014, 7(9): 3061–3068
CrossRef Google scholar
[18]
Tan K W, Moore D T, Saliba M, Sai H, Estroff L A, Hanrath T, Snaith H J, Wiesner U. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano, 2014, 8(5): 4730–4739
CrossRef Pubmed Google scholar
[19]
D’Innocenzo V, Grancini G, Alcocer M J, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Communications, 2014, 5(1): 3586
CrossRef Pubmed Google scholar
[20]
Qian L, Sun Y, Wu M, Li C, Xie D, Ding L, Shi G. A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10(15): 6837–6843
CrossRef Pubmed Google scholar
[21]
Hossain A, Roy S, Sakthipandi K. The external and internal influences on the tuning of the properties of perovskites: an overview. Ceramics International, 2019, 45(4): 4152–4166
CrossRef Google scholar
[22]
Kitazawa N, Watanabe Y, Nakamura Y. Optical properties of CH3NH3PbX3 (X= halogen) and their mixed-halide crystals. Journal of Materials Science, 2002, 37(17): 3585–3587
CrossRef Google scholar
[23]
Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Letters, 2013, 13(4): 1764–1769
CrossRef Pubmed Google scholar
[24]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692–3696
CrossRef Pubmed Google scholar
[25]
Dubey A, Adhikari N, Mabrouk S, Wu F, Chen K, Yang S, Qiao Q. A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(6): 2406–2431
CrossRef Google scholar
[26]
Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9(1): 2225
CrossRef Pubmed Google scholar
[27]
Chilvery A, Das S, Guggilla P, Brantley C, Sunda-Meya A. A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells. Science and Technology of Advanced Materials, 2016, 17(1): 650–658
CrossRef Pubmed Google scholar
[28]
Kong W, Wang G, Zheng J, Hu H, Chen H, Li Y, Hu M, Zhou X, Liu C, Chandrashekar B N, Amini A, Wang J, Xu B, Cheng C. Fabricating high-efficient blade-coated perovskite solar cells under ambient condition using lead acetate trihydrate. Solar RRL, 2018, 2(3): 1700214
CrossRef Google scholar
[29]
Li C, Yin J, Chen R, Lv X, Feng X, Wu Y, Cao J. Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with>18% efficiency. Journal of the American Chemical Society, 2019, 141(15): 6345–6351
CrossRef Pubmed Google scholar
[30]
Sun S, Yuan D, Xu Y, Wang A, Deng Z. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano, 2016, 10(3): 3648–3657
CrossRef Pubmed Google scholar
[31]
Lan C, Zhou Z, Wei R, Ho J C. Two-dimensional perovskite materials: from synthesis to energy-related applications. Materials Today Energy, 2019, 11: 61–82
CrossRef Google scholar
[32]
Even J, Pedesseau L, Katan C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem, 2014, 15(17): 3733–3741
CrossRef Pubmed Google scholar
[33]
Green M, Ho-Baillie A, Snaith H. The emergence of perovskite solar cells. Nature Photonics, 2014, 8: 506–514
CrossRef Google scholar
[34]
Ahmadi M, Wu T, Hu B. A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics. Advanced Materials, 2017, 29(41): 1605242
CrossRef Pubmed Google scholar
[35]
Nayak P K, Moore D T, Wenger B, Nayak S, Haghighirad A A, Fineberg A, Noel N K, Reid O G, Rumbles G, Kukura P, Vincent K A, Snaith H J. Mechanism for rapid growth of organic-inorganic halide perovskite crystals. Nature Communications, 2016, 7(1): 13303
CrossRef Pubmed Google scholar
[36]
Wu K, Bera A, Ma C, Du Y, Yang Y, Li L, Wu T. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Physical Chemistry Chemical Physics, 2014, 16(41): 22476–22481
CrossRef Pubmed Google scholar
[37]
Papavassiliou G C, Koutselas I B. Structural, optical and related properties of some natural three-and lower-dimensional semiconductor systems. Synthetic Metals, 1995, 71(1–3): 1713–1714
CrossRef Google scholar
[38]
Mehrabian M, Dalir S, Mahmoudi G, Miroslaw B, Babashkina M G, Dektereva A V, Safin D A. A highly stable all-inorganic CsPbBr3 perovskite solar cell. European Journal of Inorganic Chemistry, 2019, 2019(32): 3699–3703
CrossRef Google scholar
[39]
Ling Y, Yuan Z, Tian Y, Wang X, Wang J C, Xin Y, Hanson K, Ma B, Gao H. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Advanced Materials, 2016, 28(2): 305–311
CrossRef Pubmed Google scholar
[40]
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051
CrossRef Pubmed Google scholar
[41]
Hu Y, Spies L M, Alonso-Álvarez D, Mocherla P, Jones H, Hanisch J, Bein T, Barnes P R F, Docampo P. Identifying and controlling phase purity in 2D hybrid perovskite thin films. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(44): 22215–22225
CrossRef Google scholar
[42]
Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies D M, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu S F. Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy & Environmental Science, 2017, 10(10): 2095–2102
CrossRef Google scholar
[43]
Bekenstein Y, Koscher B A, Eaton S W, Yang P, Alivisatos A P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. Journal of the American Chemical Society, 2015, 137(51): 16008–16011
CrossRef Pubmed Google scholar
[44]
Shamsi J, Dang Z, Bianchini P, Canale C, Stasio F D, Brescia R, Prato M, Manna L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. Journal of the American Chemical Society, 2016, 138(23): 7240–7243
CrossRef Pubmed Google scholar
[45]
Yuan Z, Shu Y, Tian Y, Xin Y, Ma B. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chemical Communications, 2015, 51(91): 16385–16388
CrossRef Pubmed Google scholar
[46]
Sichert J A, Tong Y, Mutz N, Vollmer M, Fischer S, Milowska K Z, García Cortadella R, Nickel B, Cardenas-Daw C, Stolarczyk J K, Urban A S, Feldmann J. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Letters, 2015, 15(10): 6521–6527
CrossRef Pubmed Google scholar
[47]
Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349(6255): 1518–1521
CrossRef Pubmed Google scholar
[48]
Hintermayr V A, Richter A F, Ehrat F, Döblinger M, Vanderlinden W, Sichert J A, Tong Y, Polavarapu L, Feldmann J, Urban A S. Tuning the optical properties of perovskite nanoplatelets through composition and thickness by ligand-assisted exfoliation. Advanced Materials, 2016, 28(43): 9478–9485
CrossRef Pubmed Google scholar
[49]
Ha S T, Liu X, Zhang Q, Giovanni D, Sum T C, Xiong Q. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Advanced Optical Materials, 2014, 2(9): 838–844
CrossRef Google scholar
[50]
Schmidt L C, Pertegás A, González-Carrero S, Malinkiewicz O, Agouram S, Mínguez Espallargas G, Bolink H J, Galian R E, Pérez-Prieto J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. Journal of the American Chemical Society, 2014, 136(3): 850–853
CrossRef Pubmed Google scholar
[51]
Ma C, Shen D, Ng T W, Lo M F, Lee C S. 2D perovskites with short interlayer distance for high-performance solar cell application. Advanced Materials, 2018, 30(22): 1800710
CrossRef Pubmed Google scholar
[52]
Liang D, Peng Y, Fu Y, Shearer M J, Zhang J, Zhai J, Zhang Y, Hamers R J, Andrew T L, Jin S. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10(7): 6897–6904
CrossRef Pubmed Google scholar
[53]
Liu Y, Ye H, Zhang Y, Zhao K, Yang Z, Yuan Y, Wu H, Zhao G, Yang Z, Tang J, Xu Z, Liu S F. Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection. Matter, 2019, 1(2): 465–480
CrossRef Google scholar
[54]
Niu T, Ren H, Wu B, Xia Y, Xie X, Yang Y, Gao X, Chen Y, Huang W. Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics. Journal of Physical Chemistry Letters, 2019, 10(10): 2349–2356
CrossRef Pubmed Google scholar
[55]
Zhang X, Munir R, Xu Z, Liu Y, Tsai H, Nie W, Li J, Niu T, Smilgies D M, Kanatzidis M G, Mohite A D, Zhao K, Amassian A, Liu S F. Phase transition control for high performance Ruddlesden–Popper perovskite solar cells. Advanced Materials, 2018, 30(21): 1707166
CrossRef Pubmed Google scholar
[56]
Ke W, Mao L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D, Kanatzidis M G. Compositional and solvent engineering in Dion–Jacobson 2D perovskites boosts solar cell efficiency and stability. Advanced Energy Materials, 2019, 9(10): 1803384
CrossRef Google scholar
[57]
Hasan M M, Clegg C, Manning M, El Ghanam A, Su C, Harding M D, Bennett C, Hill I G, Koleilat G I. Stable efficient methylammonium lead iodide thin film photodetectors with highly oriented millimeter-sized crystal grains. ACS Photonics, 2020, 7(1): 57–67
[58]
Wang K, Wu C, Yang D, Jiang Y, Priya S. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano, 2018, 12(5): 4919–4929
CrossRef Pubmed Google scholar
[59]
Quan L N, Yuan M, Comin R, Voznyy O, Beauregard E M, Hoogland S, Buin A, Kirmani A R, Zhao K, Amassian A, Kim D H, Sargent E H. Ligand-stabilized reduced-dimensionality perovskites. Journal of the American Chemical Society, 2016, 138(8): 2649–2655
CrossRef Pubmed Google scholar
[60]
Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536(7616): 312–316
CrossRef Pubmed Google scholar
[61]
Ono L K, Qi Y. Research progress on organic–inorganic halide perovskite materials and solar cells. Journal of Physics. D, Applied Physics, 2018, 51(9): 093001
CrossRef Google scholar
[62]
Ren H, Yu S, Chao L, Xia Y, Sun Y, Zuo S, Li F, Niu T, Yang Y, Ju H, Li B, Du H, Gao X, Zhang J, Wang J, Zhang L, Chen Y, Huang W. Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nature Photonics, 2020, 14(3): 154–163
CrossRef Google scholar
[63]
Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials, 2016, 28(8): 2852–2867
CrossRef Google scholar
[64]
Wu G, Li X, Zhou J, Zhang J, Zhang X, Leng X, Wang P, Chen M, Zhang D, Zhao K, Liu S F, Zhou H, Zhang Y. Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Advanced Materials, 2019, 31(42): 1903889
CrossRef Pubmed Google scholar
[65]
Ma L, Ju M G, Dai J, Zeng X C. Tin and germanium based two-dimensional Ruddlesden–Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Nanoscale, 2018, 10(24): 11314–11319
CrossRef Pubmed Google scholar
[66]
Cheng P, Wu T, Liu J, Deng W Q, Han K. Lead-free, two-dimensional mixed germanium and tin perovskites. Journal of Physical Chemistry Letters, 2018, 9(10): 2518–2522
CrossRef Pubmed Google scholar
[67]
Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W. Efficient visible quasi-2D perovskite light-emitting diodes. Advanced Materials, 2016, 28(34): 7515–7520
CrossRef Pubmed Google scholar
[68]
Soe C M M, Stoumpos C C, Kepenekian M, Traoré B, Tsai H, Nie W, Wang B, Katan C, Seshadri R, Mohite A D, Even J, Marks T J, Kanatzidis M G. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. Journal of the American Chemical Society, 2017, 139(45): 16297–16309
CrossRef Pubmed Google scholar
[69]
Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699–704
CrossRef Google scholar
[70]
Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Advanced Energy Materials, 2018, 8(21): 1800051
CrossRef Google scholar
[71]
Yao K, Wang X, Xu Y X, Li F, Zhou L. Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell. Chemistry of Materials, 2016, 28(9): 3131–3138
CrossRef Google scholar
[72]
Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y. Two-dimensional Ruddlesden–Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. Journal of the American Chemical Society, 2018, 140(37): 11639–11646
CrossRef Pubmed Google scholar
[73]
Proppe A H, Quintero-Bermudez R, Tan H, Voznyy O, Kelley S O, Sargent E H. Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. Journal of the American Chemical Society, 2018, 140(8): 2890–2896
CrossRef Pubmed Google scholar
[74]
Stoumpos C C, Soe C M M, Tsai H, Nie W, Blancon J C, Cao D H, Liu F, Traoré B, Katan C, Even J, Mohite A D, Kanatzidis M G. High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2-(CH3NH3)4Pb5I16. Chem, 2017, 2(3): 427–440
CrossRef Google scholar
[75]
Fraccarollo A, Canti L, Marchese L, Cossi M. First principles study of 2D layered organohalide tin perovskites. Journal of Chemical Physics, 2017, 146(23): 234703
CrossRef Pubmed Google scholar
[76]
Koutselas I B, Ducasse L, Papavassiliou G C. Electronic properties of three-and low-dimensional semiconducting materials with Pb halide and Sn halide units. Journal of Physics Condensed Matter, 1996, 8(9): 1217–1227
CrossRef Google scholar
[77]
Liu J, Leng J, Wu K, Zhang J, Jin S. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. Journal of the American Chemical Society, 2017, 139(4): 1432–1435
CrossRef Pubmed Google scholar
[78]
Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11(10): 872–877
CrossRef Pubmed Google scholar
[79]
Kwon H C, Yang W, Lee D, Ahn J, Lee E, Ma S, Kim K, Yun S C, Moon J. Investigating recombination and charge carrier dynamics in a one-dimensional nanopillared perovskite absorber. ACS Nano, 2018, 12(5): 4233–4245
CrossRef Pubmed Google scholar
[80]
Du W, Zhang S, Shi J, Chen J, Wu Z, Mi Y, Liu Z, Li Y, Sui X, Wang R, Qiu X, Wu T, Xiao Y, Zhang Q, Liu X. Strong exciton–photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics, 2018, 5(5): 2051–2059
CrossRef Google scholar
[81]
Xu X, Zhang X, Deng W, Jie J, Zhang X. 1D organic–inorganic hybrid perovskite micro/nanocrystals: fabrication, assembly, and optoelectronic applications. Small Methods, 2018, 2(7): 1700340
CrossRef Google scholar
[82]
Ha S T, Su R, Xing J, Zhang Q, Xiong Q. Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science (Cambridge), 2017, 8(4): 2522–2536
CrossRef Pubmed Google scholar
[83]
Horváth E, Spina M, Szekrényes Z, Kamarás K, Gaal R, Gachet D, Forró L. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Letters, 2014, 14(12): 6761–6766
CrossRef Pubmed Google scholar
[84]
Zhang D, Eaton S W, Yu Y, Dou L, Yang P. Solution-phase synthesis of cesium lead halide perovskite nanowires. Journal of the American Chemical Society, 2015, 137(29): 9230–9233
CrossRef Pubmed Google scholar
[85]
Xing J, Liu X F, Zhang Q, Ha S T, Yuan Y W, Shen C, Sum T C, Xiong Q. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Letters, 2015, 15(7): 4571–4577
CrossRef Pubmed Google scholar
[86]
Chen L J, Lee C R, Chuang Y J, Wu Z H, Chen C. Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application. Journal of Physical Chemistry Letters, 2016, 7(24): 5028–5035
CrossRef Pubmed Google scholar
[87]
Wong A B, Lai M, Eaton S W, Yu Y, Lin E, Dou L, Fu A, Yang P. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Letters, 2015, 15(8): 5519–5524
CrossRef Pubmed Google scholar
[88]
Chen P, Bai Y, Lyu M, Yun J H, Hao M, Wang L. Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications. Solar RRL, 2018, 2(3): 1700186
CrossRef Google scholar
[89]
Yuan Z, Zhou C, Tian Y, Shu Y, Messier J, Wang J C, van de Burgt L J, Kountouriotis K, Xin Y, Holt E, Schanze K, Clark R, Siegrist T, Ma B. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nature Communications, 2017, 8(1): 14051
CrossRef Pubmed Google scholar
[90]
Jung M H. Broadband white light emission from one-dimensional zigzag edge-sharing perovskite. New Journal of Chemistry, 2020, 44(1): 171–180
CrossRef Google scholar
[91]
Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016, 26(15): 2435–2445
CrossRef Google scholar
[92]
Zhou Q, Bai Z, Lu W G, Wang Y, Zou B, Zhong H. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Advanced Materials, 2016, 28(41): 9163–9168
CrossRef Pubmed Google scholar
[93]
Zhao L, Yeh Y W, Tran N L, Wu F, Xiao Z, Kerner R A, Lin Y L, Scholes G D, Yao N, Rand B P. In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices. ACS Nano, 2017, 11(4): 3957–3964
CrossRef Pubmed Google scholar
[94]
Liu J, Hu F, Zhou Y, Zhang C, Wang X, Xiao M. Polarized emission from single perovskite FAPbBr3 nanocrystals. Journal of Luminescence, 2020, 221: 117032
CrossRef Google scholar
[95]
Nikl M, Mihokova E, Nitsch K, Somma F, Giampaolo C, Pazzi G P, Fabeni P, Zazubovich S. Photoluminescence of Cs4PbBr6 crystals and thin films. Chemical Physics Letters, 1999, 306(5–6): 280–284
CrossRef Google scholar
[96]
Han D, Shi H, Ming W, Zhou C, Ma B, Saparov B, Ma Y Z, Chen S, Du M H. Unraveling luminescence mechanisms in zero-dimensional halide perovskites. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2018, 6(24): 6398–6405
CrossRef Google scholar
[97]
Xu L J, Sun C Z, Xiao H, Wu Y, Chen Z N. Green-light-emitting diodes based on tetrabromide manganese (II) complex through solution process. Advanced Materials, 2017, 29(10): 1605739
CrossRef Pubmed Google scholar
[98]
Worku M, Xu L J, Chaaban M, Ben-Akacha A, Ma B. Optically pumped white light-emitting diodes based on metal halide perovskites and perovskite-related materials. APL Materials, 2020, 8(1): 010902
CrossRef Google scholar
[99]
Hebig J C, Kühn I, Flohre J, Kirchartz T. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Letters, 2016, 1(1): 309–314
CrossRef Google scholar
[100]
Öz S, Hebig J C, Jung E, Singh T, Lepcha A, Olthof S, Jan F, Gao Y, German R, van Loosdrecht P H M, Meerholz K, Kirchartz T, Mathur S. Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications. Solar Energy Materials and Solar Cells, 2016, 158: 195–201
CrossRef Google scholar
[101]
Pious J K, Lekshmi M L, Muthu C, Rakhi R B, Nair V C. Zero-dimensional methylammonium bismuth iodide-based lead-free perovskite capacitor. ACS Omega, 2017, 2(9): 5798–5802
CrossRef Pubmed Google scholar
[102]
Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C, Lam Y M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 2014, 7(1): 399–407
CrossRef Google scholar
[103]
Ponseca C S Jr, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundström V. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. Journal of the American Chemical Society, 2014, 136(14): 5189–5192
CrossRef Pubmed Google scholar
[104]
Dong C R, Wang Y, Zhang K, Zeng H. Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2(1): 100026
CrossRef Google scholar
[105]
Sweeney S J, Mukherjee J. Optoelectronic Devices and Materials. In: Kasap S, Capper P, eds. Springer Handbook of Electronic and Photonic Materials. Cham: Springer, 2017
[106]
Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T, Wang J T, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H G, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D, Snaith H J. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314): 861–865
CrossRef Pubmed Google scholar
[107]
Sarritzu V, Sestu N, Marongiu D, Chang X, Wang Q, Masi S, Colella S, Rizzo A, Gocalinska A, Pelucchi E, Mercuri M L, Quochi F, Saba M, Mura A, Bongiovanni G. Direct or indirect bandgap in hybrid lead halide perovskites? Advanced Optical Materials, 2018, 6(10): 1701254
CrossRef Google scholar
[108]
Hutter E M, Gélvez-Rueda M C, Osherov A, Bulović V, Grozema F C, Stranks S D, Savenije T J. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nature Materials, 2017, 16(1): 115–120
CrossRef Pubmed Google scholar
[109]
Brenes R, Guo D, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulović V, Savenije T J, Stranks S D. Metal halide perovskite polycrystalline films exhibiting properties of single crystals. Joule, 2017, 1(1): 155–167
CrossRef Google scholar
[110]
Saba M, Cadelano M, Marongiu D, Chen F, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A, Bongiovanni G. Correlated electron-hole plasma in organometal perovskites. Nature Communications, 2014, 5(1): 5049
CrossRef Pubmed Google scholar
[111]
Tao S X, Cao X, Bobbert P A. Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense. Scientific Reports, 2017, 7(1): 14386
CrossRef Pubmed Google scholar
[112]
Srimath Kandada A R, Neutzner S, D’Innocenzo V, Tassone F, Gandini M, Akkerman Q A, Prato M, Manna L, Petrozza A, Lanzani G. Nonlinear carrier interactions in lead halide perovskites and the role of defects. Journal of the American Chemical Society, 2016, 138(41): 13604–13611
CrossRef Pubmed Google scholar
[113]
Ke W, Kanatzidis M G. Prospects for low-toxicity lead-free perovskite solar cells. Nature Communications, 2019, 10(1): 965
CrossRef Pubmed Google scholar
[114]
Gao P, Grätzel M, Nazeeruddin M K. Organohalide lead perovskites for photovoltaic applications. Energy & Environmental Science, 2014, 7(8): 2448–2463
CrossRef Google scholar
[115]
Kulkarni S A, Baikie T, Boix P P, Yantara N, Mathews N, Mhaisalkar S. Band-gap tuning of lead halide perovskites using a sequential deposition process. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(24): 9221–9225
CrossRef Google scholar
[116]
Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014, 7(3): 982
CrossRef Google scholar
[117]
Levchuk I, Osvet A, Tang X, Brandl M, Perea J D, Hoegl F, Matt G J, Hock R, Batentschuk M, Brabec C J. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X= Cl, Br, I) colloidal nanocrystals. Nano Letters, 2017, 17(5): 2765–2770
CrossRef Pubmed Google scholar
[118]
Wang S, Sakurai T, Wen W, Qi Y. Energy level alignment at interfaces in metal halide perovskite solar cells. Advanced Materials Interfaces, 2018, 5(22): 1800260
CrossRef Google scholar
[119]
Kieslich G, Sun S, Cheetham A K. An extended tolerance factor approach for organic–inorganic perovskites. Chemical Science (Cambridge), 2015, 6(6): 3430–3433
CrossRef Pubmed Google scholar
[120]
Filip M R, Eperon G E, Snaith H J, Giustino F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nature Communications, 2014, 5(1): 5757
CrossRef Pubmed Google scholar
[121]
Ou Q, Bao X, Zhang Y, Shao H, Xing G, Li X, Shao L, Bao Q. Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Materials Science, 2019, 1(4): 268–287
CrossRef Google scholar
[122]
Smith M D, Pedesseau L, Kepenekian M, Smith I C, Katan C, Even J, Karunadasa H I. Decreasing the electronic confinement in layered perovskites through intercalation. Chemical Science (Cambridge), 2017, 8(3): 1960–1968
CrossRef Pubmed Google scholar
[123]
Fox M. Optical Properties of Solids. Oxford: Oxford University Press, 2001
[124]
Mitzi D B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M= Ge, Sn, Pb). Chemistry of Materials, 1996, 8(3): 791–800
CrossRef Google scholar
[125]
Pandey M, Jacobsen K W, Thygesen K S. Band gap tuning and defect tolerance of atomically thin two-dimensional organic-inorganic halide perovskites. Journal of Physical Chemistry Letters, 2016, 7(21): 4346–4352
CrossRef Pubmed Google scholar
[126]
Lanty G, Jemli K, Wei Y, Leymarie J, Even J, Lauret J S, Deleporte E. Room-temperature optical tunability and inhomogeneous broadening in 2D-layered organic-inorganic perovskite pseudobinary alloys. Journal of Physical Chemistry Letters, 2014, 5(22): 3958–3963
CrossRef Pubmed Google scholar
[127]
Weidman M C, Seitz M, Stranks S D, Tisdale W A. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano, 2016, 10(8): 7830–7839
CrossRef Pubmed Google scholar
[128]
Tanaka K, Kondo T. Bandgap and exciton binding energies in lead-iodide based natural quantum-well crystals. Science and Technology of Advanced Materials, 2003, 4(6): 599–604
CrossRef Google scholar
[129]
Vashishtha P, Metin D Z, Cryer M E, Chen K, Hodgkiss J M, Gaston N, Halpert J E. Shape-, size-, and composition-controlled thallium lead halide perovskite nanowires and nanocrystals with tunable band gaps. Chemistry of Materials, 2018, 30(9): 2973–2982
CrossRef Google scholar
[130]
Qiu T, Hu Y, Xu F, Yan Z, Bai F, Jia G, Zhang S. Recent advances in one-dimensional halide perovskites for optoelectronic applications. Nanoscale, 2018, 10(45): 20963–20989
CrossRef Pubmed Google scholar
[131]
Im J H, Lee C R, Lee J W, Park S W, Park N G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088–4093
CrossRef Pubmed Google scholar
[132]
Li G, Liu Z, Huang Q, Gao Y, Regula M, Wang D, Chen L Q, Wang D. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nature Energy, 2018, 3(12): 1076–1083
CrossRef Google scholar
[133]
Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S F. 3D–2D–0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability. Advanced Energy Materials, 2018, 8(15): 1703246
CrossRef Google scholar
[134]
Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials, 2014, 26(10): 1584–1589
CrossRef Pubmed Google scholar
[135]
Verma J, Islam S M, Verma A, Protasenko V, Jena D. Nitride LEDs Based on Quantum Wells and Quantum Dots. In: Huang J J, Kuo H C, Shen S C, eds. Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications, 2nd edition. Cambridge: Woodhead Publishing, 2018, 377–413
[136]
Meggiolaro D, Motti S G, Mosconi E, Barker A J, Ball J, Andrea Riccardo Perini C, Deschler F, Petrozza A, De Angelis F. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy & Environmental Science, 2018, 11(3): 702–713
CrossRef Google scholar
[137]
Herz L M. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annual Review of Physical Chemistry, 2016, 67(1): 65–89
CrossRef Pubmed Google scholar
[138]
Xing G, Wu B, Wu X, Li M, Du B, Wei Q, Guo J, Yeow E K, Sum T C, Huang W. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature Communications, 2017, 8(1): 14558
CrossRef Pubmed Google scholar
[139]
Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344–347
CrossRef Pubmed Google scholar
[140]
Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525
CrossRef Pubmed Google scholar
[141]
Wu X, Trinh M T, Niesner D, Zhu H, Norman Z, Owen J S, Yaffe O, Kudisch B J, Zhu X Y. Trap states in lead iodide perovskites. Journal of the American Chemical Society, 2015, 137(5): 2089–2096
CrossRef Pubmed Google scholar
[142]
Zheng K, Zidek K, Abdellah M, Chen J, Chábera P, Zhang W, Al-Marri M J, Pullerits T. High excitation intensity opens a new trapping channel in organic–inorganic hybrid perovskite nanoparticles. ACS Energy Letters, 2016, 1(6): 1154–1161
CrossRef Google scholar
[143]
Freppon D J, Men L, Burkhow S J, Petrich J W, Vela J, Smith E A. Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(1): 118–126
CrossRef Google scholar
[144]
Jin H, Debroye E, Keshavarz M, Scheblykin I G, Roeffaers M B J, Hofkens J, Steele J A. It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons, 2020, 7(2): 397–410
CrossRef Google scholar
[145]
Yang L, Dall’Agnese C, Dall’Agnese Y, Chen G, Gao Y, Sanehira Y, Jena A K, Wang X F, Gogotsi Y, Miyasaka T. Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells. Advanced Functional Materials, 2019, 29(46): 1905694
CrossRef Google scholar
[146]
Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P. Electro-optics of perovskite solar cells. Nature Photonics, 2015, 9(2): 106–112
CrossRef Google scholar
[147]
Even J, Pedesseau L, Katan C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. Journal of Physical Chemistry C, 2014, 118(22): 11566–11572
CrossRef Google scholar
[148]
Galkowski K, Mitioglu A, Miyata A, Plochocka P, Portugall O, Eperon G E, Wang J T W, Stergiopoulos T, Stranks S D, Snaith H J, Nicholas R J. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy & Environmental Science, 2016, 9(3): 962–970
CrossRef Google scholar
[149]
Mauck C M, Tisdale W A. Excitons in 2D organic–inorganic halide perovskites. Trends in Chemistry, 2019, 4(1): 380–393
[150]
Munson K T, Kennehan E R, Doucette G S, Asbury J B. Dynamic disorder dominates delocalization, transport, and recombination in halide perovskites. Chem, 2018, 4(12): 2826–2843
CrossRef Google scholar
[151]
Kim Y H, Kim J S, Lee T W. Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes. Advanced Materials, 2019, 31(47): 1804595
CrossRef Pubmed Google scholar
[152]
Kim Y H, Wolf C, Kim H, Lee T W. Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy, 2018, 52: 329–335
CrossRef Google scholar
[153]
Shi E, Deng S, Yuan B, Gao Y, Akriti, Yuan L, Davis C S, Zemlyanov D, Yu Y, Huang L, Dou L. Extrinsic and dynamic edge states of two-dimensional lead halide perovskites. ACS Nano, 2019, 13(2): 1635–1644
CrossRef Pubmed Google scholar
[154]
Cheng B, Li T Y, Wei P C, Yin J, Ho K T, Retamal J R D, Mohammed O F, He J H. Layer-edge device of two-dimensional hybrid perovskites. Nature Communications, 2018, 9(1): 5196
CrossRef Pubmed Google scholar
[155]
Thomson S. Measuring Charge Carrier Lifetime in Halide Perovskite Using Time-Resolved Photoluminescence Spectroscopy. Edinburgh Instruments, 2018, 23
[156]
Han Q, Bae S H, Sun P, Hsieh Y T, Yang Y M, Rim Y S, Zhao H, Chen Q, Shi W, Li G, Yang Y. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Advanced Materials, 2016, 28(11): 2253–2258
CrossRef Pubmed Google scholar
[157]
Yang B, Han K. Charge-carrier dynamics of lead-free halide perovskite nanocrystals. Accounts of Chemical Research, 2019, 52(11): 3188–3198
CrossRef Pubmed Google scholar
[158]
Zhi R, Hu J, Yang S, Perumal Veeramalai C, Zhang Z, Saleem M I, Sulaman M, Tang Y, Zou B. A facile method to synthesize two-dimensional CsPb2Br5 nano-/micro-sheets for high-performance solution-processed photodetectors. Journal of Alloys and Compounds, 2020, 824: 153970
CrossRef Google scholar
[159]
Passarelli J V, Fairfield D J, Sather N A, Hendricks M P, Sai H, Stern C L, Stupp S I. Enhanced out-of-plane conductivity and photovoltaic performance in n = 1 layered perovskites through organic cation design. Journal of the American Chemical Society, 2018, 140(23): 7313–7323
CrossRef Pubmed Google scholar
[160]
Van Gompel W T M, Herckens R, Van Hecke K, Ruttens B, D’Haen J, Lutsen L, Vanderzande D. Towards 2D layered hybrid perovskites with enhanced functionality: introducing charge-transfer complexes via self-assembly. Chemical Communications (Cambridge), 2019, 55(17): 2481–2484
CrossRef Pubmed Google scholar
[161]
Gélvez-Rueda M C, Fridriksson M B, Dubey R K, Jager W F, van der Stam W, Grozema F C. Overcoming the exciton binding energy in two-dimensional perovskite nanoplatelets by attachment of conjugated organic chromophores. Nature Communications, 2020, 11(1): 1901
CrossRef Pubmed Google scholar
[162]
Yuan Y, Chae J, Shao Y, Wang Q, Xiao Z, Centrone A, Huang J. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Advanced Energy Materials, 2015, 5(15): 1500615
CrossRef Google scholar
[163]
Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Materials, 2015, 14(2): 193–198
CrossRef Pubmed Google scholar
[164]
Juarez-Perez E J, Sanchez R S, Badia L, Garcia-Belmonte G, Kang Y S, Mora-Sero I, Bisquert J. Photoinduced giant dielectric constant in lead halide perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(13): 2390–2394
CrossRef Pubmed Google scholar
[165]
Deng Y, Xiao Z, Huang J. Light-induced self-poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability. Advanced Energy Materials, 2015, 5(20): 1500721
CrossRef Google scholar
[166]
Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q. A polymer scaffold for self-healing perovskite solar cells. Nature Communications, 2016, 7(1): 10228
CrossRef Pubmed Google scholar
[167]
Nie W, Blancon J C, Neukirch A J, Appavoo K, Tsai H, Chhowalla M, Alam M A, Sfeir M Y, Katan C, Even J, Tretiak S, Crochet J J, Gupta G, Mohite A D. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nature Communications, 2016, 7(1): 11574
CrossRef Pubmed Google scholar
[168]
Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science (Cambridge), 2015, 6(1): 613–617
CrossRef Pubmed Google scholar
[169]
Lee J W, Kim S G, Yang J M, Yang Y, Park N G. Verification and mitigation of ion migration in perovskite solar cells. APL Materials, 2019, 7(4): 041111
CrossRef Google scholar
[170]
Yang D, Li X, Zeng H. Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability. Advanced Materials Interfaces, 2018, 5(8): 1701662
CrossRef Google scholar
[171]
Li Z, Xiao C, Yang Y, Harvey S P, Kim D H, Christians J A, Yang M, Schulz P, Nanayakkara S U, Jiang C S, Luther J M, Berry J J, Beard M C, Al-Jassim M M, Zhu K. Extrinsic ion migration in perovskite solar cells. Energy & Environmental Science, 2017, 10(5): 1234–1242
CrossRef Google scholar
[172]
Zhang H, Fu X, Tang Y, Wang H, Zhang C, Yu W W, Wang X, Zhang Y, Xiao M. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nature Communications, 2019, 10(1): 1088
CrossRef Pubmed Google scholar
[173]
Cho J, DuBose J T, Le A N T, Kamat P V. Suppressed halide ion migration in 2D lead halide perovskites. ACS Materials Letters, 2020, 2(6): 565–570
[174]
Zhao Y C, Zhou W K, Zhou X, Liu K H, Yu D P, Zhao Q. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light, Science & Applications, 2017, 6(5): e16243–e16248
CrossRef Pubmed Google scholar
[175]
Xing J, Wang Q, Dong Q, Yuan Y, Fang Y, Huang J. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Physical Chemistry Chemical Physics, 2016, 18(44): 30484–30490
CrossRef Pubmed Google scholar
[176]
Lamberti F, Litti L, De Bastiani M, Sorrentino R, Gandini M, Meneghetti M, Petrozza A. High-quality, ligands-free, mixed-halide perovskite nanocrystals inks for optoelectronic applications. Advanced Energy Materials, 2017, 7(8): 1601703
CrossRef Google scholar
[177]
Miao J, Zhang F. Recent progress on highly sensitive perovskite photodetectors. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2019, 7(7): 1741–1791
CrossRef Google scholar
[178]
Yang Y, Dai H, Yang F, Zhang Y, Luo D, Zhang X, Wang K, Sun X W, Yao J. All-perovskite photodetector with fast response. Nanoscale Research Letters, 2019, 14(1): 291
CrossRef Pubmed Google scholar
[179]
Li C, Huang W, Gao L, Wang H, Hu L, Chen T, Zhang H. Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. Nanoscale, 2020, 12(4): 2201–2227
CrossRef Pubmed Google scholar
[180]
Wang X, Li M, Zhang B, Wang H, Zhao Y, Wang B. Recent progress in organometal halide perovskite photodetectors. Organic Electronics, 2018, 52: 172–183
CrossRef Google scholar
[181]
Saran R, Curry R J. Lead sulphide nanocrystal photodetector technologies. Nature Photonics, 2016, 10(2): 81–92
CrossRef Google scholar
[182]
Fang Y, Dong Q, Shao Y, Yuan Y, Huang J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9(10): 679–686
CrossRef Google scholar
[183]
Gao L, Zeng K, Guo J, Ge C, Du J, Zhao Y, Chen C, Deng H, He Y, Song H, Niu G, Tang J. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Letters, 2016, 16(12): 7446–7454
CrossRef Pubmed Google scholar
[184]
Geng X, Wang F, Tian H, Feng Q, Zhang H, Liang R, Shen Y, Ju Z, Gou G Y, Deng N, Li Y T, Ren J, Xie D, Yang Y, Ren T L. Ultrafast photodetector by integrating perovskite directly on silicon wafer. ACS Nano, 2020, 14(3): 2860–2868
CrossRef Pubmed Google scholar
[185]
Fang Y, Huang J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Advanced Materials, 2015, 27(17): 2804–2810
CrossRef Pubmed Google scholar
[186]
Dou L, Yang Y M, You J, Hong Z, Chang W H, Li G, Yang Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5(1): 5404
CrossRef Pubmed Google scholar
[187]
Zeng J, Li X, Wu Y, Yang D, Sun Z, Song Z, Wang H, Zeng H. Space-confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit. Advanced Functional Materials, 2018, 28(43): 1804394
CrossRef Google scholar
[188]
Hu X, Zhang X, Liang L, Bao J, Li S, Yang W, Xie Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials, 2014, 24(46): 7373–7380
CrossRef Google scholar
[189]
Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y. Organic light detectors: photodiodes and phototransistors. Advanced Materials, 2013, 25(31): 4267–4295
CrossRef Pubmed Google scholar
[190]
Liu C, Wang K, Yi C, Shi X, Smith A W, Gong X, Heeger A J. Efficient perovskite hybrid photovoltaics via alcohol-vapor annealing treatment. Advanced Functional Materials, 2016, 26(1): 101–110
CrossRef Google scholar
[191]
Hu W, Wu R, Yang S, Fan P, Yang J, Pan A. Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage. Journal of Physics. D, Applied Physics, 2017, 50(37): 375101
CrossRef Google scholar
[192]
Cheng Z, Liu K, Yang J, Chen X, Xie X, Li B, Zhang Z, Liu L, Shan C, Shen D. High-performance planar-type ultraviolet photodetector based on high-quality CH3NH3PbCl3 perovskite single crystals. ACS Applied Materials & Interfaces, 2019, 11(37): 34144–34150
CrossRef Pubmed Google scholar
[193]
Wang F, Mei J, Wang Y, Zhang L, Zhao H, Zhao D. Fast photoconductive responses in organometal halide perovskite photodetectors. ACS Applied Materials & Interfaces, 2016, 8(4): 2840–2846
CrossRef Pubmed Google scholar
[194]
Shen Y, Yu D, Wang X, Huo C, Wu Y, Zhu Z, Zeng H. Two-dimensional CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible photodetectors boosted by charge transfer. Nanotechnology, 2018, 29(8): 085201
CrossRef Pubmed Google scholar
[195]
Li P, Shivananju B N, Zhang Y, Li S, Bao Q. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets. Journal of Physics. D, Applied Physics, 2017, 50(9): 094002
CrossRef Google scholar
[196]
Hu Q, Wu H, Sun J, Yan D, Gao Y, Yang J. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale, 2016, 8(9): 5350–5357
CrossRef Pubmed Google scholar
[197]
Liu J, Xue Y, Wang Z, Xu Z Q, Zheng C, Weber B, Song J, Wang Y, Lu Y, Zhang Y, Bao Q. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano, 2016, 10(3): 3536–3542
CrossRef Pubmed Google scholar
[198]
Deng H, Dong D, Qiao K, Bu L, Li B, Yang D, Wang H E, Cheng Y, Zhao Z, Tang J, Song H. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale, 2015, 7(9): 4163–4170
CrossRef Pubmed Google scholar
[199]
Dong Y, Gu Y, Zou Y, Song J, Xu L, Li J, Xue J, Li X, Zeng H. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622–5632
CrossRef Pubmed Google scholar
[200]
Li X, Yu D, Chen J, Wang Y, Cao F, Wei Y, Wu Y, Wang L, Zhu Y, Sun Z, Ji J, Shen Y, Sun H, Zeng H. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015–2023
CrossRef Pubmed Google scholar
[201]
Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S, Lee J S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chemical Communications, 2016, 52(10): 2067–2070
CrossRef Pubmed Google scholar
[202]
Li Y, Lv Y, Guo Z, Dong L, Zheng J, Chai C, Chen N, Lu Y, Chen C. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Applied Materials & Interfaces, 2018, 10(18): 15888–15894
CrossRef Pubmed Google scholar
[203]
Jang D M, Kim D H, Park K, Park J, Lee J W, Song J K. Ultrasound synthesis of lead halide perovskite nanocrystals. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(45): 10625–10629
CrossRef Google scholar
[204]
Hamed M S, Mola G T. Mixed halide perovskite solar cells: progress and challenges. Critical Reviews in Solid State and Material Sciences, 2029, 45(2): 85–112
CrossRef Google scholar
[205]
Ludwigs S, ed. P3HT Revisited-From Molecular Scale to Solar Cell Devices (Vol. 265). Berlin: Springer, 2014
[206]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519
CrossRef Google scholar
[207]
Chen B, Yang M, Priya S, Zhu K. Origin of J–V hysteresis in perovskite solar cells. Journal of Physical Chemistry Letters, 2016, 7(5): 905–917
CrossRef Pubmed Google scholar
[208]
Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y. Phase pure 2D perovskite for high-performance 2D-3D heterostructured perovskite solar cells. Advanced Materials, 2018, 30(52): 1805323
CrossRef Pubmed Google scholar
[209]
Jena A K, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews, 2019, 119(5): 3036–3103
CrossRef Pubmed Google scholar
[210]
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379
CrossRef Pubmed Google scholar
[211]
Snaith H. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013, 4(21): 3623–3630
CrossRef Google scholar
[212]
Wurfel U, Cuevas A, Wurfel P. Charge carrier separation in solar cells. IEEE Journal of Photovoltaics, 2015, 5(1): 461–469
CrossRef Google scholar
[213]
Zhou D, Zhou T, Tian Y, Zhu X, Tu Y. Perovskite-based solar cells: materials, methods, and future perspectives. Journal of Nanomaterials, 2018, 2018: 8148072
CrossRef Google scholar
[214]
Calió L, Kazim S, Grätzel M, Ahmad S. Hole-transport materials for perovskite solar cells. Angewandte Chemie International Edition, 2016, 55(47): 14522–14545
CrossRef Pubmed Google scholar
[215]
Guo Z, Gao L, Zhang C, Xu Z, Ma T. Low-temperature processed non-TiO2 electron selective layers for perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(11): 4572–4589
CrossRef Google scholar
[216]
Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials, 2013, 25(27): 3727–3732
CrossRef Pubmed Google scholar
[217]
Yu J C, Hong J A, Jung E D, Kim D B, Baek S M, Lee S, Cho S, Park S S, Choi K J, Song M H. Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports, 2018, 8(1): 1070
CrossRef Pubmed Google scholar
[218]
Fang Y, Bi C, Wang D, Huang J. The functions of fullerenes in hybrid perovskite solar cells. ACS Energy Letters, 2017, 2(4): 782–794
CrossRef Google scholar
[219]
Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rolston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2017, 2(4): 17009
CrossRef Google scholar
[220]
Swain B S, Lee J. Fabrication and optimization of nanocube mixed halide perovskite films for solar cell application. Solar Energy, 2020, 201: 209–218
CrossRef Google scholar
[221]
Liu Q, Zhao Y, Ma Y, Sun X, Ge W, Fang Z, Bai H, Tian Q, Fan B, Zhang T. A mixed solvent for rapid fabrication of large-area methylammonium lead iodide layers by one-step coating at room temperature. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(31): 18275–18284
CrossRef Google scholar
[222]
Hou W, Xiao Y, Han G, Qin C, Xiao L, Chang Y, Li H. Dimethyl sulfoxide and bromide methylamine co-treatment inducing defect healing for effective and stable perovskite solar cells. Materials Research Bulletin, 2019, 112: 165–173
CrossRef Google scholar
[223]
Lyu M, Chen J, Park N G. Improvement of efficiency and stability of CuSCN-based inverted perovskite solar cells by post-treatment with potassium thiocyanate. Journal of Solid State Chemistry, 2019, 269: 367–374
CrossRef Google scholar
[224]
Wang X D, Li W G, Liao J F, Kuang D B. Recent advances in halide perovskite single-crystal thin films: fabrication methods and optoelectronic applications. Solar RRL, 2019, 3(4): 1800294
CrossRef Google scholar
[225]
Zhang J, Zhai G, Gao W, Zhang C, Shao Z, Mei F, Zhang J, Yang Y, Liu X, Xu B. Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(8): 4190–4198
CrossRef Google scholar
[226]
Xia Y, Ran C, Chen Y, Li Q, Jiang N, Li C, Pan Y, Li T, Wang J, Huang W. Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(7): 3193–3202
CrossRef Google scholar
[227]
Zhou X, Zhang Y, Kong W, Hu M, Zhang L, Liu C, Li X, Pan C, Yu G, Cheng C, Xu B. Crystallization manipulation and morphology evolution for highly efficient perovskite solar cell fabrication via hydration water induced intermediate phase formation under heat assisted spin-coating. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(7): 3012–3021
CrossRef Google scholar
[228]
Ye F, Chen H, Xie F, Tang W, Yin M, He J, Bi E, Wang Y, Yang X, Han L. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy & Environmental Science, 2016, 9(7): 2295–2301
CrossRef Google scholar
[229]
Hao F, Stoumpos C C, Guo P, Zhou N, Marks T J, Chang R P H, Kanatzidis M G. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society, 2015, 137(35): 11445–11452
CrossRef Pubmed Google scholar
[230]
Ma C, Shen D, Huang B, Li X, Chen W C, Lo M F, Wang P, Hon-Wah Lam M, Lu Y, Ma B, Lee C S. High performance low-dimensional perovskite solar cells based on a one dimensional lead iodide perovskite. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(15): 8811–8817
CrossRef Google scholar
[231]
You P, Tang G, Yan F. Two-dimensional materials in perovskite solar cells. Materials Today Energy, 2019, 11: 128–158
[232]
Wei Y, Chu H, Chen B, Tian Y, Yang X, Cai B, Zhang Y, Zhao J. Two-dimensional cyclohexane methylamine-based perovskites as stable light absorbers for solar cells. Solar Energy, 2020, 201: 13–20
CrossRef Google scholar
[233]
Chang C Y, Tsai B C, Lin M Z, Huang Y C, Tsao C S. An integrated approach towards the fabrication of highly efficient and long-term stable perovskite nanowire solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(43): 22824–22833
CrossRef Google scholar
[234]
Wang S W, Yan S, Wang M A, Chang L, Wang J L, Wang Z. Construction of nanowire CH3NH3PbI3-based solar cells with 17.62% efficiency by solvent etching technique. Solar Energy Materials and Solar Cells, 2017, 167: 173–177
CrossRef Google scholar
[235]
Singh R, Suranagi S R, Yang S J, Cho K. Enhancing the power conversion efficiency of perovskite solar cells via the controlled growth of perovskite nanowires. Nano Energy, 2018, 51: 192–198
CrossRef Google scholar
[236]
He J, Zhang F, Xiang Y, Lian J, Wang X, Zhang Y, Peng X, Zeng P, Qu J, Song J. Preparation of low dimensional antimonene oxides and their application in Cu:NiOx based planar pin perovskite solar cells. Journal of Power Sources, 2019, 435: 226819
CrossRef Google scholar
[237]
Sanehira E M, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C, Luther J M. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Science Advances, 2017, 3(10): eaao4204
CrossRef Pubmed Google scholar
[238]
Mao L, Wu Y, Stoumpos C C, Traore B, Katan C, Even J, Wasielewski M R, Kanatzidis M G. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10−xClx. Journal of the American Chemical Society, 2017, 139(34): 11956–11963
CrossRef Pubmed Google scholar
[239]
Lau C F J, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho-Baillie A. Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(14): 5580–5586
CrossRef Google scholar
[240]
Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nature Communications, 2018, 9(1): 1076
CrossRef Pubmed Google scholar
[241]
Niezgoda J S, Foley B J, Chen A Z, Choi J J. Improved charge collection in highly efficient CsPbBrI2 solar cells with light-induced dealloying. ACS Energy Letters, 2017, 2(5): 1043–1049
CrossRef Google scholar
[242]
Mehdi H, Mhamdi A, Bouazizi A. Effect of perovskite precursor ratios and solvents volume on the efficiency of MAPbI3−xClx mixed halide perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 109: 104915
CrossRef Google scholar
[243]
Guo N, Zhang T, Li G, Xu F, Qian X, Zhao Y. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2. Journal of Semiconductors, 2017, 38(1): 014004
CrossRef Google scholar
[244]
Yang F, Kamarudin M A, Zhang P, Kapil G, Ma T, Hayase S. Enhanced crystallization by methanol additive in antisolvent for achieving high-quality MAPbI3 perovskite films in humid atmosphere. ChemSusChem, 2018, 11(14): 2348–2357
CrossRef Pubmed Google scholar
[245]
Aydin E, Troughton J, Bastiani M D, Ugur E, Sajjad M, Alzahrani A, Neophytou M, Schwingenschlögl U, Laquai F, Baran D, De Wolf S. Room-temperature-sputtered nanocrystalline nickel oxide as hole transport layer for p–i–n perovskite solar cells. ACS Applied Energy Materials, 2018, 1(11): 6227–6233
CrossRef Google scholar
[246]
Guo Y, Yin X, Liu J, Chen W, Wen S, Que M, Xie H, Yang Y, Que W, Gao B. Vacuum thermal-evaporated SnO2 as uniform electron transport layer and novel management of perovskite intermediates for efficient and stable planar perovskite solar cells. Organic Electronics, 2019, 65: 207–214
CrossRef Google scholar
[247]
Park I J, Kang G, Park M A, Kim J S, Seo S W, Kim D H, Zhu K, Park T, Kim J Y. Highly efficient and uniform 1 cm2 perovskite solar cells with an electrochemically deposited NiOx hole-extraction layer. ChemSusChem, 2017, 10(12): 2660–2667
CrossRef Pubmed Google scholar
[248]
Yin G, Zhao H, Jiang H, Yuan S, Niu T, Zhao K, Liu Z, Liu S F. Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency. Advanced Functional Materials, 2018, 28(39): 1803269
CrossRef Google scholar
[249]
Jiang H, Feng J, Zhao H, Li G, Yin G, Han Y, Yan F, Liu Z, Liu S. Low temperature fabrication for high performance flexible CsPbI2Br perovskite solar cells. Advancement of Science, 2018, 5(11): 1801117
CrossRef Google scholar
[250]
Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Advanced Energy Materials, 2019, 9(14): 1803241
CrossRef Google scholar
[251]
Liu Z, Chang J, Lin Z, Zhou L, Yang Z, Chen D, Zhang C, Liu S, Hao Y. High-performance planar perovskite solar cells using low temperature, solution-combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Advanced Energy Materials, 2018, 8(19): 1703432
CrossRef Google scholar
[252]
Jo Y, Oh K S, Kim M, Kim K H, Lee H, Lee C W, Kim D S. High performance of planar perovskite solar cells produced from PbI2 (DMSO) and PbI2 (NMP) complexes by intramolecular exchange. Advanced Materials Interfaces, 2016, 3(10): 1500768
CrossRef Google scholar
[253]
Gkini K E, Antoniadou M, Balis N, Kaltzoglou A, Kontos A G, Falaras P. Mixing cations and halide anions in perovskite solar cells. Materials Today: Proceedings, 2019, 19: 73–78
CrossRef Google scholar
[254]
Jiang L L, Wang Z K, Li M, Zhang C C, Ye Q Q, Hu K H, Lu D Z, Fang P F, Liao L S. Passivated perovskite crystallization via g-C3N4 for high-performance solar cells. Advanced Functional Materials, 2018, 28(7): 1705875
CrossRef Google scholar
[255]
Hadadian M, Correa-Baena J P, Goharshadi E K, Ummadisingu A, Seo J Y, Luo J, Gholipour S, Zakeeruddin S M, Saliba M, Abate A, Grätzel M, Hagfeldt A. Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Advanced Materials, 2016, 28(39): 8681–8686
CrossRef Pubmed Google scholar
[256]
Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308): 92–95
CrossRef Pubmed Google scholar
[257]
Ahmad K, Kumar P, Mobin S M. A two-step modified sequential deposition method-based Pb-free (CH3NH3)3Sb2I9 perovskite with improved open circuit voltage and performance. ChemElectroChem, 2020, 7(4): 946–950
CrossRef Google scholar

Acknowledgments

The authors acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant Program, the support of Canada Foundation for Innovation through John R. Evans Leaders Fund, the support through New Frontier in Research Fund, Dr. Robert Gillespie through the Dr Robert Gillespie graduate Scholarship, and the Pengrowth–Nova Scotia Energy through the Pengrowth Energy Innovation Grant. The authors acknowledge the support of Dean Grijm, Mark Leblanc and Greg Everett in completing this project.

Conflicts of interest

The authors declare no conflict of interest.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(4176 KB)

Accesses

Citations

Detail

Sections
Recommended

/