LixNa2−xW4O13 nanosheet for scalable electrochromic device

Yucheng LU, Xin YANG, Hongrun JIN, Kaisi LIU, Guoqun ZHANG, Liang HUANG, Jia LI, Jun ZHOU

PDF(2683 KB)
PDF(2683 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (3) : 298-310. DOI: 10.1007/s12200-020-1033-z
RESEARCH ARTICLE
RESEARCH ARTICLE

LixNa2−xW4O13 nanosheet for scalable electrochromic device

Author information +
History +

Abstract

The printed electronics technology can be used to efficiently construct smart devices and is dependent on functional inks containing well-dispersed active materials. Two-dimensional (2D) materials are promising functional ink candidates due to their superior properties. However, the majority 2D materials can disperse well only in organic solvents or in surfactant-assisted water solutions, which limits their applications. Herein, we report a lithium (Li)-ion exchange method to improve the dispersity of the Na2W4O13 nanosheets in pure water. The Li-ion-exchanged Na2W4O13 (LixNa2−xW4O13) nanosheets show highly stable dispersity in water with a zeta potential of −55 mV. Moreover, this aqueous ink can be sprayed on various substrates to obtain a uniform LixNa2−xW4O13 nanosheet film, exhibiting an excellent electrochromic performance. A complementary electrochromic device containing a LixNa2−xW4O13 nanosheet film as an electrochromic layer and Prussian white (PW) as an ion storage layer exhibits a large optical modulation of 75% at 700 nm, a fast switching response of less than 2 s, and outstanding cyclic stability. This Na2W4O13-based aqueous ink exhibits considerable potential for fabricating large-scale and flexible electrochromic devices, which would meet the practical application requirements.

Graphical abstract

Keywords

printed electronics technology / two-dimensional material / ink / ion exchange / electrochromic device

Cite this article

Download citation ▾
Yucheng LU, Xin YANG, Hongrun JIN, Kaisi LIU, Guoqun ZHANG, Liang HUANG, Jia LI, Jun ZHOU. LixNa2−xW4O13 nanosheet for scalable electrochromic device. Front. Optoelectron., 2021, 14(3): 298‒310 https://doi.org/10.1007/s12200-020-1033-z

References

[1]
Baeg K J, Caironi M, Noh Y Y. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Advanced Materials, 2013, 25(31): 4210–4244
CrossRef Pubmed Google scholar
[2]
Perelaer J, Smith P J, Mager D, Soltman D, Volkman S K, Subramanian V, Korvink J G, Schubert U S. Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry, 2010, 20(39): 8446–8453
CrossRef Google scholar
[3]
Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014, 7(9): 2944–2950
CrossRef Google scholar
[4]
Scardaci V, Coull R, Lyons P E, Rickard D, Coleman J N. Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small, 2011, 7(18): 2621–2628
CrossRef Pubmed Google scholar
[5]
Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000, 290(5499): 2123–2126
CrossRef Pubmed Google scholar
[6]
van Osch T H J, Perelaer J, de Laat A W M, Schubert U S. Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Advanced Materials, 2008, 20(2): 343–345
CrossRef Google scholar
[7]
Ding T, Liu K, Li J, Xue G, Chen Q, Huang L, Hu B, Zhou J. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Advanced Functional Materials, 2017, 27(22): 1700551–1700555
CrossRef Google scholar
[8]
Fang Y S, Wu Z C, Li J, Jiang F Y, Zhang K, Zhang Y L, Zhou Y H, Zhou J, Hu B. High‐performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Advanced Functional Materials, 2018, 28(9): 1705409–1705416
CrossRef Google scholar
[9]
Kamyshny A, Magdassi S. Conductive nanomaterials for printed electronics. Small, 2014, 10(17): 3515–3535
CrossRef Pubmed Google scholar
[10]
Berggren M, Nilsson D, Robinson N D. Organic materials for printed electronics. Nature Materials, 2007, 6(1): 3–5
CrossRef Pubmed Google scholar
[11]
Bonaccorso F, Bartolotta A, Coleman J N, Backes C. 2D-crystal-based functional inks. Advanced Materials, 2016, 28(29): 6136–6166
CrossRef Pubmed Google scholar
[12]
Cai X, Luo Y, Liu B, Cheng H M. Preparation of 2D material dispersions and their applications. Chemical Society Reviews, 2018, 47(16): 6224–6266
CrossRef Pubmed Google scholar
[13]
Xiao X, Song H, Lin S, Zhou Y, Zhan X, Hu Z, Zhang Q, Sun J, Yang B, Li T, Jiao L, Zhou J, Tang J, Gogotsi Y. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016, 7(1): 11296–11303
CrossRef Pubmed Google scholar
[14]
Hu Z, Xiao X, Jin H, Li T, Chen M, Liang Z, Guo Z, Li J, Wan J, Huang L, Zhang Y, Feng G, Zhou J. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nature Communications, 2017, 8(1): 15630–15638
CrossRef Pubmed Google scholar
[15]
Zhao Y, Zhu K. Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. Journal of the American Chemical Society, 2014, 136(35): 12241–12244
CrossRef Pubmed Google scholar
[16]
Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nature Nanotechnology, 2014, 9(4): 257–261
CrossRef Pubmed Google scholar
[17]
Li T, Jin H, Liang Z, Huang L, Lu Y, Yu H, Hu Z, Wu J, Xia B Y, Feng G, Zhou J. Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method. Nanoscale, 2018, 10(15): 6844–6849
CrossRef Pubmed Google scholar
[18]
Chen Z, Song Y, Cai J, Zheng X, Han D, Wu Y, Zang Y, Niu S, Liu Y, Zhu J, Liu X, Wang G. Tailoring the d‐band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angewandte Chemie International Edition, 2018, 57(18): 5076–5080
CrossRef Pubmed Google scholar
[19]
Kelly A G, Hallam T, Backes C, Harvey A, Esmaeily A S, Godwin I, Coelho J, Nicolosi V, Lauth J, Kulkarni A, Kinge S, Siebbeles L D A, Duesberg G S, Coleman J N. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science, 2017, 356(6333): 69–73
CrossRef Pubmed Google scholar
[20]
Withers F, Yang H, Britnell L, Rooney A P, Lewis E, Felten A, Woods C R, Sanchez Romaguera V, Georgiou T, Eckmann A, Kim Y J, Yeates S G, Haigh S J, Geim A K, Novoselov K S, Casiraghi C. Heterostructures produced from nanosheet-based inks. Nano Letters, 2014, 14(7): 3987–3992
CrossRef Pubmed Google scholar
[21]
Zhang C J, Kremer M P, Seral-Ascaso A, Park S H, McEvoy N, Anasori B, Gogotsi Y, Nicolosi V. Stamping of flexible, coplanar micro‐supercapacitors using MXene inks. Advanced Functional Materials, 2018, 28(9): 1705506–1705515
CrossRef Google scholar
[22]
Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K, Taniguchi T, Watanabe K, Kong J, Englund D, Jarillo-Herrero P. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nature Nanotechnology, 2017, 12(12): 1124–1129
CrossRef Pubmed Google scholar
[23]
Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun’Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3(9): 563–568
CrossRef Pubmed Google scholar
[24]
Mashtalir O, Naguib M, Mochalin V N, Dall’Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4(1): 1716–1722
CrossRef Pubmed Google scholar
[25]
Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017): 568–571
CrossRef Pubmed Google scholar
[26]
Mendoza-Sánchez B, Hanlon D, Coelho J, Brien S O, Pettersson H. An investigation of the energy storage properties of a 2D α-MoO3-SWCNTs composite films. 2D Materials, 2016, 4(1): 015005–015012
[27]
Lin S, Shih C J, Strano M S, Blankschtein D. Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions. Journal of the American Chemical Society, 2011, 133(32): 12810–12823
CrossRef Pubmed Google scholar
[28]
Wang J L, Lu Y R, Li H H, Liu J W, Yu S H. Large area co-assembly of nanowires for flexible transparent smart windows. Journal of the American Chemical Society, 2017, 139(29): 9921–9926
CrossRef Pubmed Google scholar
[29]
Cong S, Tian Y, Li Q, Zhao Z, Geng F. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Advanced Materials, 2014, 26(25): 4260–4267
CrossRef Pubmed Google scholar
[30]
Shendage S S, Patil V L, Vanalakar S A, Patil S P, Harale N S, Bhosale J L, Kim J H, Patil P S. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sensors and Actuators B, Chemical, 2017, 240: 426–433
CrossRef Google scholar
[31]
Sun S, Watanabe M, Wu J, An Q, Ishihara T. Ultrathin WO3·0.33H2O nanotubes for CO2 photoreduction to Acetate with high selectivity. Journal of the American Chemical Society, 2018, 140(20): 6474–6482
CrossRef Pubmed Google scholar
[32]
Liang L, Li K, Xiao C, Fan S, Liu J, Zhang W, Xu W, Tong W, Liao J, Zhou Y, Ye B, Xie Y. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. Journal of the American Chemical Society, 2015, 137(8): 3102–3108
CrossRef Pubmed Google scholar
[33]
Wang J, Zhang L, Yu L, Jiao Z, Xie H, Lou X W, Sun X W. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nature Communications, 2014, 5(1): 4921–4927
CrossRef Pubmed Google scholar
[34]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169–11186
CrossRef Pubmed Google scholar
[35]
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50
CrossRef Google scholar
[36]
Blöchl P E. Projector augmented-wave method. Physical Review B, 1994, 50(24): 17953–17979
CrossRef Pubmed Google scholar
[37]
Perdew J P, Burke K, Ernzerhof M. Generialized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
CrossRef Pubmed Google scholar
[38]
Mathew K, Sundararaman R, Letchworth-Weaver K, Arias T A, Hennig R G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. Journal of Chemical Physics, 2014, 140(8): 084106–084113
CrossRef Pubmed Google scholar
[39]
Kim J, Kwon S, Cho D H, Kang B, Kwon H, Kim Y, Park S O, Jung G Y, Shin E, Kim W G, Lee H, Ryu G H, Choi M, Kim T H, Oh J, Park S, Kwak S K, Yoon S W, Byun D, Lee Z, Lee C. Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nature Communications, 2015, 6(1): 8294–8302
CrossRef Pubmed Google scholar
[40]
Smith R J, Lotya M, Coleman J N. The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New Journal of Physics, 2010, 12(12): 125008–125018
CrossRef Google scholar
[41]
Jiao Z, Wang J, Ke L, Liu X, Demir H V, Yang M F, Sun X W. Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device. Electrochimica Acta, 2012, 63: 153–160
CrossRef Google scholar
[42]
Van der Ven A, Thomas J C, Xu Q, Bhattacharya J. Linking the electronic structure of solids to their thermodynamic and kinetic properties. Mathematics and Computers in Simulation, 2010, 80(7): 1393–1410
CrossRef Google scholar
[43]
Van der Ven A, Thomas J C, Xu Q, Swoboda B, Morgan D. Nondilute diffusion from first principles: Li diffusion in LixTiS2. Physical Review B, 2008, 78(10): 104306–1043017
CrossRef Google scholar
[44]
Cai G, Darmawan P, Cheng X, Lee P S. Inkjet printed large area multifunctional smart windows. Advanced Energy Materials, 2017, 7(14): 1602598–1602605
CrossRef Google scholar
[45]
Liang L, Zhang J, Zhou Y, Xie J, Zhang X, Guan M, Pan B, Xie Y. High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets. Scientific Reports, 2013, 3(1): 1936–1943
CrossRef Pubmed Google scholar
[46]
Azam A, Kim J, Park J, Novak T G, Tiwari A P, Song S H, Kim B, Jeon S. Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano Letters, 2018, 18(9): 5646–5651
CrossRef Pubmed Google scholar
[47]
Yang P, Sun P, Chai Z, Huang L, Cai X, Tan S, Song J, Mai W. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angewandte Chemie International Edition, 2014, 53(44): 11935–11939
CrossRef Pubmed Google scholar
[48]
Granqvist C G. Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films, 2014, 564: 1–38
CrossRef Google scholar
[49]
Llordés A, Garcia G, Gazquez J, Milliron D J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature, 2013, 500(7462): 323–326
CrossRef Pubmed Google scholar
[50]
Zhang S, Cao S, Zhang T, Fisher A, Lee J Y. Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy & Environmental Science, 2018, 11(10): 2884–2892
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11874036, 51872101, 51672097, 51972124, and 51902115), the National Program for Support of Top-notch Young professionals, the program for HUST Academic Frontier Youth Team, the Fundamental Research Funds for the Central Universities (HUST: 2017KFXKJC001 and 2018KFYXKJC025), the Guangdong Province Key Area R&D Program (No. 2019B010940001), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (No. 2017BT01N111), and Basic Research Project of Shenzhen, China (No. JCYJ20170412171430026). We wish to thank the facility support from the Center for Nanoscale Characterization & Devices, WNLO of HUST and the Analytical and Testing Center of HUST.

Conflict of Interest

ƒThe authors declare no conflict of interest.

Electronic Supplementary Material

ƒƒSupplementary material is available in the online version of this article at https://doi.org/10.1007/s12200-020-1033-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2683 KB)

Accesses

Citations

Detail

Sections
Recommended

/