Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells

Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG

PDF(1571 KB)
PDF(1571 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (3) : 272-281. DOI: 10.1007/s12200-020-1031-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells

Author information +
History +

Abstract

Organic–inorganic hybrid perovskite solar cells have generated wide interest due to the rapid development of their photovoltaic conversion efficiencies. However, the majority of the reported devices have been fabricated via spin coating with a device area of <1 cm2. In this study, we fabricated a wide-bandgap formamidinium lead bromide (FAPbBr3) film using a cost-effective, high-yielding doctor-blade-coating process. The effects of different surfactants, such as l-α-phosphatidylcholine, polyoxyethylene sorbitan monooleate, sodium lauryl sulfonate, and hexadecyl trimethyl ammonium bromide, were studied during the printing process. Accompanying the optimization of the blading temperature, crystal sizes of over 10 mm and large-area perovskite films of 5 cm × 5 cm were obtained using this method. The printed FAPbBr3 solar cells exhibited a short-circuit current density of 8.22 mA/cm2, an open-circuit voltage of 1.175 V, and an efficiency of 7.29%. Subsequently, we replaced the gold with silver nanowires as the top electrode to prepare a semitransparent perovskite solar cell with an average transmittance (400–800 nm) of 25.42%, achieving a high-power efficiency of 5.11%. This study demonstrates efficient doctor-blading printing for preparing large-area FAPbBr3 films that possess high potential for applications in building integrated photovoltaics.

Graphical abstract

Keywords

semitransparent / printing / perovskite solar cell (PSC) / doctor blading / wide bandgap

Cite this article

Download citation ▾
Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells. Front. Optoelectron., 2020, 13(3): 272‒281 https://doi.org/10.1007/s12200-020-1031-1

References

[1]
Jelle B P, Breivik C. State-of-the-art building integrated photovoltaics. Energy Procedia, 2012, 20: 68–77
CrossRef Google scholar
[2]
Dou Y, Liu Z, Wu Z, Liu Y, Li J, Leng C, Fang D, Liang G, Xiao J, Li W, Wei X, Huang F, Cheng Y B, Zhong J. Self-augmented ion blocking of sandwiched 2D/1D/2D electrode for solution processed high efficiency semitransparent perovskite solar cell. Nano Energy, 2020, 71: 104567
CrossRef Google scholar
[3]
Tai Q, Yan F. Emerging semitransparent solar cells: materials and device design. Advanced Materials, 2017, 29(34): 1700192
CrossRef Pubmed Google scholar
[4]
Bu T, Li J, Zheng F, Chen W, Wen X, Ku Z, Peng Y, Zhong J, Cheng Y B, Huang F. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nature Communications, 2018, 9(1): 4609
CrossRef Pubmed Google scholar
[5]
Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y B, Zhong J. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy & Environmental Science, 2017, 10(12): 2509–2515
CrossRef Google scholar
[6]
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379
CrossRef Pubmed Google scholar
[7]
Bu T, Wu L, Liu X, Yang X, Zhou P, Yu X, Qin T, Shi J, Wang S, Li S, Ku Z, Peng Y, Huang F, Meng Q, Cheng Y B, Zhong J. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Advanced Energy Materials, 2017, 7(20): 1700576
CrossRef Google scholar
[8]
NREL Chart. Best research-cell efficiencies. 2020
[9]
Zhang Y, Liang Y, Wang Y, Guo F, Sun L, Xu D. Planar FAPbBr3 solar cells with power conversion efficiency above 10%. ACS Energy Letters, 2018, 3(8): 1808–1814
CrossRef Google scholar
[10]
Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014, 7(9): 2944–2950
CrossRef Google scholar
[11]
Ye F, Chen H, Xie F, Tang W, Yin M, He J, Bi E, Wang Y, Yang X, Han L. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy & Environmental Science, 2016, 9(7): 2295–2301
CrossRef Google scholar
[12]
Kim J H, Williams S T, Cho N, Chueh C C, Jen A K Y. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Advanced Energy Materials, 2015, 5(4): 1401229
CrossRef Google scholar
[13]
Deng Y, Dong Q, Bi C, Yuan Y, Huang J. Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active Layer. Advanced Energy Materials, 2016, 6(11): 1600372
CrossRef Google scholar
[14]
Yang M, Li Z, Reese M O, Reid O G, Kim D H, Siol S, Klein T R, Yan Y, Berry J J, van Hest M F A M, Zhu K. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy, 2017, 2(5): 17038
CrossRef Google scholar
[15]
Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 2018, 3(7): 560–566
CrossRef Google scholar
[16]
Hwang K, Jung Y S, Heo Y J, Scholes F H, Watkins S E, Subbiah J, Jones D J, Kim D Y, Vak D. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Advanced Materials, 2015, 27(7): 1241–1247
CrossRef Pubmed Google scholar
[17]
Wang D, Zheng J, Wang X, Gao J, Kong W, Cheng C, Xu B.Improvement on the performance of perovskite solar cells by doctor-blade coating under ambient condition with hole-transporting material optimization. Journal of Energy Chemistry, 2019, 38(1): 207–213
[18]
Deng Y, Peng E, Shao Y, Xiao Z, Dong Q, Huang J. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 2015, 8(5): 1544–1550
CrossRef Google scholar
[19]
He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J, Lin Z. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nature Communications, 2017, 8(1): 16045
CrossRef Pubmed Google scholar
[20]
Tang S, Deng Y, Zheng X, Bai Y, Fang Y, Dong Q, Wei H, Huang J. Composition engineering in doctor-blading of perovskite solar cells. Advanced Energy Materials, 2017, 7(18): 1700302
CrossRef Google scholar
[21]
Ye F, Tang W, Xie F, Yin M, He J, Wang Y, Chen H, Qiang Y, Yang X, Han L. Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Advanced Materials, 2017, 29(35): 1701440
CrossRef Pubmed Google scholar
[22]
Zuo L, Shi X, Fu W, Jen A K. Highly efficient semitransparent solar cells with selective absorption and tandem architecture. Advanced Materials, 2019, 31(36): 1901683
CrossRef Pubmed Google scholar
[23]
Liu X, Bu T, Li J, He J, Li T, Zhang J, Li W, Ku Z, Peng Y, Huang F, Cheng Y B, Zhong J. Stacking n-type layers: effective route towards stable, efficient and hysteresis-free planar perovskite solar cells. Nano Energy, 2018, 44: 34–42
CrossRef Google scholar
[24]
Dai J, Zheng H, Zhu C, Lu J, Xu C. Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3 and CH(NH2)2PbBr3 microstructures. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(20): 4408–4413
CrossRef Google scholar
[25]
Wright A D, Verdi C, Milot R L, Eperon G E, Pérez-Osorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M. Electron-phonon coupling in hybrid lead halide perovskites. Nature Communications, 2016, 7(1): 11755
CrossRef Pubmed Google scholar
[26]
Galkowski K, Mitioglu A A, Surrente A, Yang Z, Maude D K, Kossacki P, Eperon G E, Wang J T, Snaith H J, Plochocka P, Nicholas R J. Spatially resolved studies of the phases and morphology of methylammonium and formamidinium lead tri-halide perovskites. Nanoscale, 2017, 9(9): 3222–3230
CrossRef Pubmed Google scholar
[27]
Bi C, Shao Y, Yuan Y, Xiao Z, Wang C, Gao Y, Huang J. Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(43): 18508–18514
CrossRef Google scholar
[28]
Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525
CrossRef Pubmed Google scholar
[29]
Hanusch F C, Wiesenmayer E, Mankel E, Binek A, Angloher P, Fraunhofer C, Giesbrecht N, Feckl J M, Jaegermann W, Johrendt D, Bein T, Docampo P. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. Journal of Physical Chemistry Letters, 2014, 5(16): 2791–2795
CrossRef Pubmed Google scholar
[30]
Gao L, Yang G. Organic-inorganic halide perovskites: from crystallization of polycrystalline films to solar cell applications. Solar RRL, 2020, 4(2): 1900200
[31]
Li Y, Ding B, Chu Q Q, Yang G J, Wang M, Li C X, Li C J. Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Scientific Reports, 2017, 7(1): 46141
CrossRef Pubmed Google scholar
[32]
Yang K, Li F, Zhang J, Veeramalai C P, Guo T. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode. Nanotechnology, 2016, 27(9): 095202
CrossRef Pubmed Google scholar
[33]
Kim H, Kim H S, Ha J, Park N G, Yoo S. Empowering semi-transparent solar cells with thermal-mirror functionality. Advanced Energy Materials, 2016, 6(14): 1502466
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Key Research and Development Plan (No. 2017YFE0131900), the National Natural Science Foundation of China (Grant Nos. 51672202 and 21875178). J.Z. thanks the support from the “Chutian Scholar Program” of Hubei Province, China.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1571 KB)

Accesses

Citations

Detail

Sections
Recommended

/