Graphene-based all-optical modulators
Chuyu ZHONG, Junying LI, Hongtao LIN
Graphene-based all-optical modulators
All-optical devices, which are utilized to process optical signals without electro-optical conversion, play an essential role in the next generation ultrafast, ultralow power-consumption optical information processing systems. To satisfy the performance requirement, nonlinear optical materials that are associated with fast response, high nonlinearity, broad wavelength operation, low optical loss, low fabrication cost, and integration compatibility with optical components are required. Graphene is a promising candidate, particularly considering its electrically or optically tunable optical properties, ultrafast large nonlinearity, and high integration compatibility with various nanostructures. Thus far, three all-optical modulation systems utilize graphene, namely free-space modulators, fiber-based modulators, and on-chip modulators. This paper aims to provide a broad view of state-of-the-art researches on the graphene-based all-optical modulation systems. The performances of different devices are reviewed and compared to present a comprehensive analysis and perspective of graphene-based all-optical modulation devices.
graphene / saturable absorption / low power consumption / all-optical modulation
[1] |
Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics, 2020, 14(1): 37–43
CrossRef
Google scholar
|
[2] |
Reed G T, Mashanovich G, Gardes F Y, Thomson D J. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526
CrossRef
Google scholar
|
[3] |
He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L, Cai X. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit·s−1 and beyond. Nature Photonics, 2019, 13(5): 359–364
CrossRef
Google scholar
|
[4] |
Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725): 101–104
CrossRef
Pubmed
Google scholar
|
[5] |
Li M, Wang L, Li X, Xiao X, Yu S. Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications. Photonics Research, 2018, 6(2): 109–116
CrossRef
Google scholar
|
[6] |
Alloatti L, Palmer R, Diebold S, Pahl K P, Chen B, Dinu R, Fournier M, Fedeli J M, Zwick T, Freude W, Koos C, Leuthold J. 100 GHz silicon–organic hybrid modulator. Light, Science & Applications, 2014, 3(5): e173
CrossRef
Google scholar
|
[7] |
Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528
CrossRef
Google scholar
|
[8] |
Ayata M, Fedoryshyn Y, Heni W, Baeuerle B, Josten A, Zahner M, Koch U, Salamin Y, Hoessbacher C, Haffner C, Elder D L, Dalton L R, Leuthold J. High-speed plasmonic modulator in a single metal layer. Science, 2017, 358(6363): 630–632
CrossRef
Pubmed
Google scholar
|
[9] |
Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B, Saha S, Elder D L, Dalton L R, Boltasseva A, Shalaev V M, Kinsey N, Leuthold J. Low-loss plasmon-assisted electro-optic modulator. Nature, 2018, 556(7702): 483–486
CrossRef
Pubmed
Google scholar
|
[10] |
Davoodi F, Granpayeh N. All optical logic gates−a tutorial. International Journal of Information & Communication Technology Research, 2012, 43(3): 65–98
|
[11] |
Singh P, Tripathi D K, Jaiswal S, Dixit H K. All-optical logic gates: designs, classification, and comparison. Advances in Optical Technologies, 2014, 2014: 275083
CrossRef
Google scholar
|
[12] |
Minzioni P, Lacava C, Tanabe T, Dong J, Hu X, Csaba G, Porod W, Singh G, Willner A E, Almaiman A, Torres-Company V, Schröder J, Peacock A C, Strain M J, Parmigiani F, Contestabile G, Marpaung D, Liu Z, Bowers J E, Chang L, Fabbri S, Ramos Vázquez M, Bharadwaj V, Eaton S M, Lodahl P, Zhang X, Eggleton B J, Munro W J, Nemoto K, Morin O, Laurat J, Nunn J. Roadmap on all-optical processing. Journal of Optics, 2019, 21(6): 063001
CrossRef
Google scholar
|
[13] |
Chai Z, Hu X, Wang F, Niu X, Xie J, Gong Q. Ultrafast all-optical switching. Advanced Optical Materials, 2017, 5(7): 1600665
CrossRef
Google scholar
|
[14] |
Sasikala V, Chitra K. All optical switching and associated technologies: a review. Journal of Optics, 2018, 47(3): 307–317
CrossRef
Google scholar
|
[15] |
Almeida V R, Barrios C A, Panepucci R R, Lipson M. All-optical control of light on a silicon chip. Nature, 2004, 431(7012): 1081–1084
CrossRef
Pubmed
Google scholar
|
[16] |
Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
CrossRef
Google scholar
|
[17] |
Gholipour B, Zhang J, MacDonald K F, Hewak D W, Zheludev N I. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Advanced Materials, 2013, 25(22): 3050–3054
CrossRef
Pubmed
Google scholar
|
[18] |
Chai Z, Zhu Y, Hu X, Yang X, Gong Z, Wang F, Yang H, Gong Q. On-chip optical switch based on plasmon-photon hybrid nanostructure-coated multicomponent nanocomposite. Advanced Optical Materials, 2016, 4(8): 1159–1166
CrossRef
Google scholar
|
[19] |
Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 2010, 4(7): 477–483
CrossRef
Google scholar
|
[20] |
Vo T D, Pant R, Pelusi M D, Schröder J, Choi D Y, Debbarma S K, Madden S J, Luther-Davies B, Eggleton B J. Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals. Optics Letters, 2011, 36(5): 710–712
CrossRef
Pubmed
Google scholar
|
[21] |
Hou J, Chen L, Dong W, Zhang X. 40 Gb/s reconfigurable optical logic gates based on FWM in silicon waveguide. Optics Express, 2016, 24(3): 2701–2711
CrossRef
Pubmed
Google scholar
|
[22] |
Chai Z, Zhu Y, Hu X Y, Yang X Y, Gong Z B, Wang F F, Yang H, Gong Q H. On-chip optical switch based on plasmon-photon hybrid nanostructure-coated multicomponent nanocomposite. Advanced Optical Materials, 2016, 4(8): 1159–1166
CrossRef
Google scholar
|
[23] |
Wang F, Hu X, Song H, Li C, Yang H, Gong Q. Ultralow-power all-optical logic data distributor based on resonant excitation enhanced nonlinearity by upconversion radiative transfer. Advanced Optical Materials, 2017, 5(20): 1700360
CrossRef
Google scholar
|
[24] |
Chai Z, Hu X, Wang F, Li C, Ao Y, Wu Y, Shi K, Yang H, Gong Q. Ultrafast on-chip remotely-triggered all-optical switching based on epsilon-near-zero nanocomposites. Laser & Photonics Reviews, 2017, 11(5): 1700042
CrossRef
Google scholar
|
[25] |
Yang X, Hu X, Yang H, Gong Q. Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics, 2017, 6(1): 365–376
CrossRef
Google scholar
|
[26] |
Dong W, Huang Z, Hou J, Santos R, Zhang X. Integrated all-optical programmable logic array based on semiconductor optical amplifiers. Optics Letters, 2018, 43(9): 2150–2153
CrossRef
Pubmed
Google scholar
|
[27] |
Guo B, Xiao Q L, Wang S H, Zhang H. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser & Photonics Reviews, 2019, 13(12): 1800327
CrossRef
Google scholar
|
[28] |
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. 2D transition metal dichalcogenides. Nature Reviews. Materials, 2017, 2(8): 17033
CrossRef
Google scholar
|
[29] |
Tarruell L, Greif D, Uehlinger T, Jotzu G, Esslinger T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature, 2012, 483(7389): 302–305
CrossRef
Pubmed
Google scholar
|
[30] |
Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907
CrossRef
Google scholar
|
[31] |
Yu S, Wu X, Wang Y, Guo X, Tong L. 2D materials for optical modulation: challenges and opportunities. Advanced Materials, 2017, 29(14): 1606128
CrossRef
Pubmed
Google scholar
|
[32] |
Jin L, Ma X, Zhang H, Zhang H, Chen H, Xu Y. 3 GHz passively harmonic mode-locked Er-doped fiber laser by evanescent field-based nano-sheets topological insulator. Optics Express, 2018, 26(24): 31244–31252
CrossRef
Pubmed
Google scholar
|
[33] |
Koo J, Park J, Lee J, Jhon Y M, Lee J H. Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber. Optics Express, 2016, 24(10): 10575–10589
CrossRef
Pubmed
Google scholar
|
[34] |
Li Z, Li R, Pang C, Dong N, Wang J, Yu H, Chen F. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber. Optics Express, 2019, 27(6): 8727–8737
CrossRef
Pubmed
Google scholar
|
[35] |
Liu M, Tang R, Luo A P, Xu W C, Luo Z C. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh repetition-rate pulse fiber lasers. Photonics Research, 2018, 6(10): C1–C7
CrossRef
Google scholar
|
[36] |
Liu M, Zheng X W, Qi Y L, Liu H, Luo A P, Luo Z C, Xu W C, Zhao C J, Zhang H. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser. Optics Express, 2014, 22(19): 22841–22846
CrossRef
Pubmed
Google scholar
|
[37] |
Liu W, Pang L, Han H, Liu M, Lei M, Fang S, Teng H, Wei Z. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Optics Express, 2017, 25(3): 2950–2959
CrossRef
Pubmed
Google scholar
|
[38] |
Qi Y L, Liu H, Cui H, Huang Y Q, Ning Q Y, Liu M, Luo Z C, Luo A P, Xu W C. Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser. Optics Express, 2015, 23(14): 17720–17726
CrossRef
Pubmed
Google scholar
|
[39] |
Yan P, Lin R, Ruan S, Liu A, Chen H. A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film. Optics Express, 2015, 23(1): 154–164
CrossRef
Pubmed
Google scholar
|
[40] |
Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J, Weng J. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser. Photonics Research, 2015, 3(3): A79–A86
CrossRef
Google scholar
|
[41] |
Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 2013, 4(1): 1811
CrossRef
Pubmed
Google scholar
|
[42] |
Tan W C, Huang L, Ng R J, Wang L, Hasan D M N, Duffin T J, Kumar K S, Nijhuis C A, Lee C, Ang K W. A black phosphorus carbide infrared phototransistor. Advanced Materials, 2018, 30(6): 1705039
CrossRef
Pubmed
Google scholar
|
[43] |
Talebi H, Dolatyari M, Rostami G, Manzuri A, Mahmudi M, Rostami A. Fabrication of fast mid-infrared range photodetector based on hybrid graphene-PbSe nanorods. Applied Optics, 2015, 54(20): 6386–6390
CrossRef
Pubmed
Google scholar
|
[44] |
Jabbarzadeh F, Siahsar M, Dolatyari M, Rostami G, Rostami A. Fabrication of new mid-infrared photodetectors based on graphene modified by organic molecules. IEEE Sensors Journal, 2015, 15(5): 2795–2800
|
[45] |
Huang L, Tan W C, Wang L, Dong B, Lee C, Ang K W. Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power. ACS Applied Materials & Interfaces, 2017, 9(41): 36130–36136
CrossRef
Pubmed
Google scholar
|
[46] |
Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T, Xia F. Black phosphorus mid-infrared photodetectors with high gain. Nano Letters, 2016, 16(7): 4648–4655
CrossRef
Pubmed
Google scholar
|
[47] |
Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907
CrossRef
Google scholar
|
[48] |
Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238
CrossRef
Google scholar
|
[49] |
Youngblood N, Li M. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics, 2017, 6(6): 1205–1218
CrossRef
Google scholar
|
[50] |
Ma Z, Hemnani R, Bartels L, Agarwal R, Sorger V J. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration. Applied Physics A, Materials Science & Processing, 2018, 124(2): 126
CrossRef
Google scholar
|
[51] |
Fang Y, Ge Y, Wang C, Zhang H. Mid-infrared photonics using 2D materials: status and challenges. Laser & Photonics Reviews, 2020, 14(1): 1900098
CrossRef
Google scholar
|
[52] |
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
CrossRef
Pubmed
Google scholar
|
[53] |
Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q, Tang D, Loh K P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 2011, 4(3): 297–307
CrossRef
Google scholar
|
[54] |
Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083
CrossRef
Google scholar
|
[55] |
Bao Q, Zhang H, Yang J, Wang S, Tang D, Jose R, Ramakrishna S, Lim C T, Loh K P. Graphene-polymer nanofiber membrane for ultrafast photonics. Advanced Functional Materials, 2010, 20(5): 782–791
CrossRef
Google scholar
|
[56] |
Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Applied Physics Letters, 2010, 96(11): 111112
CrossRef
Google scholar
|
[57] |
Liu X M, Yang H R, Cui Y D, Chen G W, Yang Y, Wu X Q, Yao X K, Han D D, Han X X, Zeng C, Guo J, Li W L, Cheng G, Tong L M. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Scientific Reports, 2016, 6(1): 26024
CrossRef
Pubmed
Google scholar
|
[58] |
Wu J, Yang Z, Qiu C, Zhang Y, Wu Z, Yang J, Lu Y, Li J, Yang D, Hao R, Li E, Yu G, Lin S. Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles. Nanoscale, 2018, 10(17): 8023–8030
CrossRef
Pubmed
Google scholar
|
[59] |
Flöry N, Ma P, Salamin Y, Emboras A, Taniguchi T, Watanabe K, Leuthold J, Novotny L. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nature Nanotechnology, 2020, 15(2): 118–124
CrossRef
Pubmed
Google scholar
|
[60] |
Wang X, Gan X. Graphene integrated photodetectors and opto-electronic devices−a review. Chinese Physics B, 2017, 26(3): 034201
|
[61] |
Youngblood N, Anugrah Y, Ma R, Koester S J, Li M. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Letters, 2014, 14(5): 2741–2746
CrossRef
Pubmed
Google scholar
|
[62] |
Gao Y, Shiue R J, Gan X, Li L, Peng C, Meric I, Wang L, Szep A, Walker D Jr, Hone J, Englund D. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001–2005
CrossRef
Pubmed
Google scholar
|
[63] |
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67
CrossRef
Pubmed
Google scholar
|
[64] |
Liang G, Hu X, Yu X, Shen Y, Li L H, Davies A G, Linfield E H, Liang H K, Zhang Y, Yu S F, Wang Q J. Integrated terahertz graphene modulator with 100% modulation depth. ACS Photonics, 2015, 2(11): 1559–1566
CrossRef
Google scholar
|
[65] |
Phare C T, Daniel Lee Y H, Cardenas J, Lipson M. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics, 2015, 9(8): 511–514
CrossRef
Google scholar
|
[66] |
Yu L, Yin Y, Shi Y, Dai D, He S. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 2016, 3(2): 159–166
CrossRef
Google scholar
|
[67] |
Yan S, Zhu X, Frandsen L H, Xiao S, Mortensen N A, Dong J, Ding Y. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications, 2017, 8(1): 14411
CrossRef
Pubmed
Google scholar
|
[68] |
Lin H, Song Y, Huang Y, Kita D, Deckoff-Jones S, Wang K, Li L, Li J, Zheng H, Luo Z, Wang H, Novak S, Yadav A, Huang C C, Shiue R J, Englund D, Gu T, Hewak D, Richardson K, Kong J, Hu J. Chalcogenide glass-on-graphene photonics. Nature Photonics, 2017, 11(12): 798–805
CrossRef
Google scholar
|
[69] |
Wu J, Lu Y, Feng S, Wu Z, Lin S, Hao Z, Yao T, Li X, Zhu H, Lin S. The interaction between quantum dots and graphene. Applications in Graphene-Based Solar Cells and Photodetectors, 2018, 28(50): 1804712
|
[70] |
Sorianello V, Midrio M, Contestabile G, Asselberghs I, Van Campenhout J, Huyghebaert C, Goykhman I, Ott A K, Ferrari A C, Romagnoli M. Graphene–silicon phase modulators with gigahertz bandwidth. Nature Photonics, 2018, 12(1): 40–44
CrossRef
Google scholar
|
[71] |
Cheng Z, Zhu X, Galili M, Frandsen L H, Hu H, Xiao S, Dong J, Ding Y, Oxenløwe L K, Zhang X. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 2019, doi: 10.1515/nanoph-2019-0381
CrossRef
Google scholar
|
[72] |
Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z, Wang F, Liu K, Liu Z. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nature Photonics, 2019, 13(11): 754–759
CrossRef
Google scholar
|
[73] |
Cheng Z, Cao R, Guo J, Yao Y, Wei K, Gao S, Wang Y, Dong J, Zhang H. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, doi: 10.1515/nanoph-2019-0510
CrossRef
Google scholar
|
[74] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200
CrossRef
Pubmed
Google scholar
|
[75] |
Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530–1534
CrossRef
Pubmed
Google scholar
|
[76] |
Luo S, Wang Y, Tong X, Wang Z. Graphene-based optical modulators. Nanoscale Research Letters, 2015, 10(1): 199
CrossRef
Pubmed
Google scholar
|
[77] |
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355
CrossRef
Google scholar
|
[78] |
Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F. Measurement of the optical conductivity of graphene. Physical Review Letters, 2008, 101(19): 196405
CrossRef
Pubmed
Google scholar
|
[79] |
Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G, Kim K. A roadmap for graphene. Nature, 2012, 490(7419): 192–200
CrossRef
Pubmed
Google scholar
|
[80] |
Xing G, Guo H, Zhang X, Sum T C, Huan C H. The physics of ultrafast saturable absorption in graphene. Optics Express, 2010, 18(5): 4564–4573
CrossRef
Pubmed
Google scholar
|
[81] |
Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Physical Review Letters, 2008, 101(15): 157402
CrossRef
Pubmed
Google scholar
|
[82] |
Dong P, Qian W, Liang H, Shafiiha R, Feng N N, Feng D, Zheng X, Krishnamoorthy A V, Asghari M. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Optics Express, 2010, 18(10): 9852–9858
CrossRef
Pubmed
Google scholar
|
[83] |
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907
CrossRef
Pubmed
Google scholar
|
[84] |
Gan X, Zhao C, Wang Y, Mao D, Fang L, Han L, Zhao J. Graphene-assisted all-fiber phase shifter and switching. Optica, 2015, 2(5): 468–471
CrossRef
Google scholar
|
[85] |
Wang Y, Gan X, Zhao C, Fang L, Mao D, Xu Y, Zhang F, Xi T, Ren L, Zhao J. All-optical control of microfiber resonator by graphene’s photothermal effect. Applied Physics Letters, 2016, 108(17): 171905
CrossRef
Google scholar
|
[86] |
Qiu C, Yang Y, Li C, Wang Y, Wu K, Chen J. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Scientific Reports, 2017, 7(1): 17046
CrossRef
Pubmed
Google scholar
|
[87] |
Tielrooij K J, Hesp N C H, Principi A, Lundeberg M B, Pogna E A A, Banszerus L, Mics Z, Massicotte M, Schmidt P, Davydovskaya D, Purdie D G, Goykhman I, Soavi G, Lombardo A, Watanabe K, Taniguchi T, Bonn M, Turchinovich D, Stampfer C, Ferrari A C, Cerullo G, Polini M, Koppens F H L. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. Nature Nanotechnology, 2018, 13(1): 41–46
CrossRef
Pubmed
Google scholar
|
[88] |
Soref R, Bennett B. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 1987, 23(1): 123–129
CrossRef
Google scholar
|
[89] |
Weis P, Garcia-Pomar J L, Höh M, Reinhard B, Brodyanski A, Rahm M. Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano, 2012, 6(10): 9118–9124
CrossRef
Pubmed
Google scholar
|
[90] |
Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W. Graphene based all-optical spatial terahertz modulator. Scientific Reports, 2014, 4(1): 7409
CrossRef
Pubmed
Google scholar
|
[91] |
Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858
CrossRef
Pubmed
Google scholar
|
[92] |
Yu S, Wu X, Chen K, Chen B, Guo X, Dai D, Tong L, Liu W, Ron Shen Y. All-optical graphene modulator based on optical Kerr phase shift. Optica, 2016, 3(5): 541–544
CrossRef
Google scholar
|
[93] |
Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810
CrossRef
Pubmed
Google scholar
|
[94] |
Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694
CrossRef
Pubmed
Google scholar
|
[95] |
Marini A, Cox J D, García De Abajo F J. Theory of graphene saturable absorption. Physical Review B, 2017, 95(12): 125408
CrossRef
Google scholar
|
[96] |
Brida D, Tomadin A, Manzoni C, Kim Y J, Lombardo A, Milana S, Nair R R, Novoselov K S, Ferrari A C, Cerullo G, Polini M. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Communications, 2013, 4: 1987
Pubmed
|
[97] |
Hanson G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics, 2008, 103(6): 064302
CrossRef
Google scholar
|
[98] |
Tielrooij K J, Piatkowski L, Massicotte M, Woessner A, Ma Q, Lee Y, Myhro K S, Lau C N, Jarillo-Herrero P, van Hulst N F, Koppens F H L. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nature Nanotechnology, 2015, 10(5): 437–443
CrossRef
Pubmed
Google scholar
|
[99] |
Soavi G, Wang G, Rostami H, Tomadin A, Balci O, Paradisanos I, Pogna E A A, Cerullo G, Lidorikis E, Polini M, Ferrari A C. Hot electrons modulation of third-harmonic generation in graphene. ACS Photonics, 2019, 6(11): 2841–2849
CrossRef
Google scholar
|
[100] |
Song J C W, Tielrooij K J, Koppens F H L, Levitov L S. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Physical Review B, 2013, 87(15): 155429
CrossRef
Google scholar
|
[101] |
Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters, 2008, 92(4): 042116
CrossRef
Google scholar
|
[102] |
Trushin M, Grupp A, Soavi G, Budweg A, De Fazio D, Sassi U, Lombardo A, Ferrari A C, Belzig W, Leitenstorfer A, Brida D. Ultrafast pseudospin dynamics in graphene. Physical Review B, 2015, 92(16): 165429
CrossRef
Google scholar
|
[103] |
Song J C, Reizer M Y, Levitov L S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Physical Review Letters, 2012, 109(10): 106602
CrossRef
Pubmed
Google scholar
|
[104] |
Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen Y R. Ultrafast all-optical graphene modulator. Nano Letters, 2014, 14(2): 955–959
CrossRef
Pubmed
Google scholar
|
[105] |
Tomadin A, Hornett S M, Wang H I, Alexeev E M, Candini A, Coletti C, Turchinovich D, Kläui M, Bonn M, Koppens F H L, Hendry E, Polini M, Tielrooij K J. The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies. Science Advances, 2018, 4(5): eaar5313
CrossRef
Pubmed
Google scholar
|
[106] |
Mikhailov S A. Theory of the strongly nonlinear electrodynamic response of graphene: a hot electron model. Physical Review B, 2019, 100(11): 115416
CrossRef
Google scholar
|
[107] |
Tian W C, Li W H, Yu W B, Liu X H. A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines, 2017, 8(5): 163
CrossRef
Google scholar
|
[108] |
George P A, Strait J, Dawlaty J, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Letters, 2008, 8(12): 4248–4251
CrossRef
Pubmed
Google scholar
|
[109] |
Majumdar A, Kim J, Vuckovic J, Wang F. Electrical control of silicon photonic crystal cavity by graphene. Nano Letters, 2013, 13(2): 515–518
CrossRef
Pubmed
Google scholar
|
[110] |
Fan K, Suen J, Wu X, Padilla W J. Graphene metamaterial modulator for free-space thermal radiation. Optics Express, 2016, 24(22): 25189–25201
CrossRef
Pubmed
Google scholar
|
[111] |
Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light, Science & Applications, 2018, 7(1): 51
CrossRef
Pubmed
Google scholar
|
[112] |
Gan X, Mak K F, Gao Y, You Y, Hatami F, Hone J, Heinz T F, Englund D. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Letters, 2012, 12(11): 5626–5631
CrossRef
Pubmed
Google scholar
|
[113] |
Shi Z, Gan L, Xiao T, Guo H, Li Z. All-optical modulation of a graphene-cladded silicon photonic crystal cavity. ACS Photonics, 2015, 2(11): 1513–1518
CrossRef
Google scholar
|
[114] |
Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G. Broadband all-optical modulation using a graphene-covered-microfiber. Laser Physics Letters, 2013, 10(6): 065901
CrossRef
Google scholar
|
[115] |
Chen J H, Zheng B C, Shao G H, Ge S J, Xu F, Lu Y Q. An all-optical modulator based on a stereo graphene–microfiber structure. Light, Science & Applications, 2015, 4(12): e360
CrossRef
Google scholar
|
[116] |
Yu S L, Meng C, Chen B, Wang H, Wu X, Liu W, Zhang S, Liu Y, Su Y, Tong L. Graphene decorated microfiber for ultrafast optical modulation. Optics Express, 2015, 23(8): 10764–10770
CrossRef
Pubmed
Google scholar
|
[117] |
Meng C, Yu S L, Wang H Q, Cao Y, Tong L M, Liu W T, Shen Y R. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding. Light, Science & Applications, 2015, 4(11): e348
CrossRef
Google scholar
|
[118] |
Zhang H, Healy N, Shen L, Huang C C, Hewak D W, Peacock A C. Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss. Scientific Reports, 2016, 6(1): 23512
CrossRef
Pubmed
Google scholar
|
[119] |
Debnath P C, Uddin S, Song Y W. Ultrafast all-optical switching incorporating in situ graphene grown along an optical fiber by the evanescent field of a laser. ACS Photonics, 2018, 5(2): 445–455
CrossRef
Google scholar
|
[120] |
Romagnoli M, Sorianello V, Midrio M, Koppens F H L, Huyghebaert C, Neumaier D, Galli P, Templ W, D’errico A, Ferrari A C. Graphene-based integrated photonics for next-generation datacom and telecom. Nature Reviews Materials, 2018, 3(10): 392–414
CrossRef
Google scholar
|
[121] |
Yu L, Zheng J, Xu Y, Dai D, He S. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits. ACS Nano, 2014, 8(11): 11386–11393
CrossRef
Pubmed
Google scholar
|
[122] |
Sun F, Xia L, Nie C, Shen J, Zou Y, Cheng G, Wu H, Zhang Y, Wei D, Yin S, Du C. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure. Nanotechnology, 2018, 29(13): 135201
CrossRef
Pubmed
Google scholar
|
[123] |
Sun F, Xia L, Nie C, Qiu C, Tang L, Shen J, Sun T, Yu L, Wu P, Yin S, Yan S, Du C. An all-optical modulator based on a graphene–plasmonic slot waveguide at 1550 nm. Applied Physics Express, 2019, 12(4): 042009
CrossRef
Google scholar
|
[124] |
Wang H, Yang N, Chang L, Zhou C, Li S, Deng M, Li Z, Liu Q, Zhang C, Li Z, Wang Y. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research, 2020, 8(4): 468
CrossRef
Google scholar
|
[125] |
Ono M, Taniyama H, Xu H, Tsunekawa M, Kuramochi E, Nozaki K, Notomi M. Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica, 2016, 3(9): 999–1005
CrossRef
Google scholar
|
[126] |
Ruzicka B A, Wang S, Werake L K, Weintrub B, Loh K P, Zhao H. Hot carrier diffusion in graphene. Physical Review B, 2010, 82(19): 195414
CrossRef
Google scholar
|
[127] |
Zhu J, Cheng X, Liu Y, Wang R, Jiang M, Li D, Lu B, Ren Z. Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber. Photonics Research, 2019, 7(1): 8–13
CrossRef
Google scholar
|
[128] |
Wang Y, Zhang F, Tang X, Chen X, Chen Y, Huang W, Liang Z, Wu L, Ge Y, Song Y, Liu J, Zhang D, Li J, Zhang H. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser & Photonics Reviews, 2018, 12(6): 1800016
CrossRef
Google scholar
|
[129] |
Koppens F H, Chang D E, García de Abajo F J. Graphene plasmonics: a platform for strong light-matter interactions. Nano Letters, 2011, 11(8): 3370–3377
CrossRef
Pubmed
Google scholar
|
[130] |
Ooi K J A, Tan D T H. Nonlinear graphene plasmonics. Proceedings of the Royal Society of London, Series A, 2017, 473(2206): 20170433
|
/
〈 | 〉 |