Optical generation of UWB pulses utilizing Fano resonance modulation

Zhe XU, Yanyang ZHOU, Shuhuang CHEN, Liangjun LU, Gangqiang ZHOU, Jianping CHEN, Linjie ZHOU

PDF(2479 KB)
PDF(2479 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (4) : 426-437. DOI: 10.1007/s12200-020-1010-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Optical generation of UWB pulses utilizing Fano resonance modulation

Author information +
History +

Abstract

In this paper, we reported an integrated method to generate ultra-wideband (UWB) pulses of different orders based on a reconfigurable silicon micro-ring resonator-coupled Mach–Zehnder interferometer. Under proper operating conditions, the device can produce Fano resonances with a peak-to-valley extinction ratio of above 20 dB. UWB monocycle and doublet signals with picosecond pulse widths are produced when the micro-ring resonator is modulated by square and Gaussian electrical pulses, respectively. With our Fano resonance modulator on silicon photonics, it is promising to foresee versatile on-chip microwave signal generation.

Graphical abstract

Keywords

ultra-wideband (UWB) generation / Fano resonance / intensity modulation / integrated silicon modulator

Cite this article

Download citation ▾
Zhe XU, Yanyang ZHOU, Shuhuang CHEN, Liangjun LU, Gangqiang ZHOU, Jianping CHEN, Linjie ZHOU. Optical generation of UWB pulses utilizing Fano resonance modulation. Front. Optoelectron., 2021, 14(4): 426‒437 https://doi.org/10.1007/s12200-020-1010-6

References

[1]
Marpaung D, Yao J, Capmany J. Integrated microwave photonics. Nature Photonics, 2019, 13(2): 80–90
CrossRef Google scholar
[2]
Zhang W, Yao J. Silicon-based integrated microwave photonics. IEEE Journal of Quantum Electronics, 2016, 52(1): 1–12
CrossRef Google scholar
[3]
Yao J, Zeng F, Wang Q. Photonic generation of ultrawideband signals. Journal of Lightwave Technology, 2007, 25(11): 3219–3235
[4]
Zhou L, Sun Q, Lu L, Chen J. Programmable universal microwave-photonic filter based on cascaded dual-ring assisted MZIs. In: Proceedings of Smart Photonic and Optoelectronic Integrated Circuits XX. San Francisco: SPIE, 2018, 105361G
[5]
Yang R, Zhou L, Wang M, Zhu H, Chen J. Application of SOI microring coupling modulation in microwave photonic phase shifters. Frontiers of Optoelectronics, 2016, 9(3): 483–488
CrossRef Google scholar
[6]
Zhong Y, Zhou L, Zhou Y, Xia Y, Liu S, Lu L, Chen J, Wang X. Microwave frequency upconversion employing a coupling-modulated ring resonator. Photonics Research, 2017, 5(6): 689–694
[7]
Zhuang L, Roeloffzen C G H, Meijerink A, Burla M, Etten W C V. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part II: experimental prototype. Journal of Lightwave Technology, 2010, 28(1): 19–31
[8]
Yao J. Photonics for ultrawideband communications. IEEE Microwave Magazine, 2009, 10(4): 82–95
CrossRef Google scholar
[9]
Li F. Indoor positioning and navigation chips, key technologies for next-generation smart devices. 2019. Available at mp.weixin.qq.com/s/VswdBtAifrpx69t7xG-ppw (in Chinese)
[10]
Federal Communication Commission. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, 2002
[11]
FiRa. What UWB does. Available at firaconsortium.org/discover/what-uwb-does
[12]
Li J, Fu S, Xu K, Wu J, Lin J, Tang M, Shum P. Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator. Optics Letters, 2008, 33(3): 288–290
[13]
Zhou E, Xu X, Lui K, Wong K K. A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions. IEEE Photonics Technology Letters, 2010, 22(14): 1063–1065
CrossRef Google scholar
[14]
Li P, Chen H, Chen M, Xie S. Gigabit/s photonic generation, modulation, and transmission for a reconfigurable impulse radio UWB over fiber system. IEEE Photonics Journal, 2012, 4(3): 805–816
CrossRef Google scholar
[15]
Zeng F, Yao J. Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator. IEEE Photonics Technology Letters, 2006, 18(19): 2062–2064
CrossRef Google scholar
[16]
Wang Q, Yao J. Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter. Optics Express, 2007, 15(22): 14667–14672
[17]
Shehata M, Mostafa H, Ismail Y. On the theoretical limits of the power efficiency of photonically generated IR-UWB waveforms. Journal of Lightwave Technology, 2018, 36(10): 2017–2023
CrossRef Google scholar
[18]
Feng H, Fok M P, Xiao S, Ge J, Zhou Q, Locke M, Toole R, Hu W. A reconfigurable high-order UWB signal generation scheme using RSOA-MZI structure. IEEE Photonics Journal, 2014, 6(2): 1–7
CrossRef Google scholar
[19]
Hongqian M, Muguang W, Shuisheng J. Photonic generation of power-efficient UWB pulses adaptable to multiple modulation formats using a dual-drive Mach-Zehnder modulator. In: Proceedings of the 15th International Conference on Optical Communications and Networks (ICOCN). Hangzhou: IEEE, 2016, 1–3
[20]
Liow T Y, Song J, Tu X, Lim A E J, Fang Q, Duan N, Yu M, Lo G Q. Silicon optical interconnect device technologies for 40 Gb/s and beyond. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(2): 8200312
CrossRef Google scholar
[21]
Abraha S T, Okonkwo C M, Tangdiongga E, Koonen A M. Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses. Optics Letters, 2011, 36(12): 2363–2365
[22]
Luo B, Dong J, Yu Y, Zhang X. Bandwidth-tunable single-carrier UWB monocycle generation using a nonlinear optical loop mirror. IEEE Photonics Technology Letters, 2012, 24(18): 1646–1649
CrossRef Google scholar
[23]
Yue Y, Huang H, Zhang L, Wang J, Yang J Y, Yilmaz O F, Levy J S, Lipson M, Willner A E. UWB monocycle pulse generation using two-photon absorption in a silicon waveguide. Optics Letters, 2012, 37(4): 551–553
CrossRef Pubmed Google scholar
[24]
Wang Q, Yao J. UWB doublet generation using nonlinearly-biased electro-optic intensity modulator. Electronics Letters, 2006, 42(22): 1304
CrossRef Google scholar
[25]
Moreno V, Rius M, Mora J, Muriel M A, Capmany J. UWB monocycle generator based on the non-linear effects of an SOA-integrated structure. IEEE Photonics Technology Letters, 2014, 26(7): 690–693
CrossRef Google scholar
[26]
Moreno V, Connelly M J, Romero-Vivas J, Krzczanowicz L, Mora J, Muriel M A, Capmany J. Integrated 16-ps pulse generator based on a reflective SOA-EAM for UWB schemes. IEEE Photonics Technology Letters, 2016, 28(20): 2180–2182
CrossRef Google scholar
[27]
Moreno V, Rius M, Mora J, Muriel M A, Capmany J. Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI. Optics Express, 2013, 21(19): 22911–22917
[28]
Wu T, Wu J, Choi Y, Chiu Y. Novel scheme of optical Ultra-Wide-Band generation using a single electroabsorption modulator. In: Proceedings of IEEE LEOS Annual Meeting Conference. Belek-Antalya: IEEE, 2009, 509–510
[29]
Kuo Y, Wu J, Chen R, Chiu Y. Photonic Ultra-wide-band doublet pulse using tapered-directional coupler integrated electroabsorption modulator. In: Proceedings of the 21st Annual Wireless and Optical Communications Conference (WOCC). Kaohsiung: IEEE, 2012, 196–197
[30]
Xu K, Wu X, Sung J, Cheng Z. Amplitude and phase modulation of UWB monocycle pulses on a silicon photonic chip. IEEE Photonics Technology Letters, 2016, 28(3): 248–251
CrossRef Google scholar
[31]
Liu F, Wang T, Zhang Z, Qiu M, Su Y. On-chip photonic generation of ultra-wideband monocycle pulses. Electronics Letters, 2009, 45(24): 1247–1249
CrossRef Google scholar
[32]
Mirshafiei M, LaRochelle S, Rusch L A. Optical UWB waveform generation using a micro-ring resonator. IEEE Photonics Technology Letters, 2012, 24(15): 1316–1318
CrossRef Google scholar
[33]
Wu X, Xu K, Zhou W, Chow C W, Tsang H K. Scalable ultra-wideband pulse generation based on silicon photonic integrated circuits. IEEE Photonics Technology Letters, 2017, 29(21): 1896–1899
CrossRef Google scholar
[34]
Shao H, Chen W, Zhao Y, Chi H, Yang J, Jiang X. Performance evaluation of photonic UWB generation based on silicon MZM. Optics Express, 2012, 20(7): 7398–7403
[35]
Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonance in nanoscale structures. Reviews of Modern Physics, 2010, 82(3): 2257–2298
CrossRef Google scholar
[36]
Wang F, Wang X, Zhou H, Zhou Q, Hao Y, Jiang X, Wang M, Yang J. Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer. Optics Express, 2009, 17(9): 7708–7716
CrossRef Pubmed Google scholar
[37]
Dyshlyuk A V. Tunable Fano-like resonances in a bent single-mode waveguide-based Fabry-Perot resonator. Optics Letters, 2019, 44(2): 231–234
CrossRef Pubmed Google scholar
[38]
Zhang C, Kang G, Xiong Y, Xu T, Gu L, Gan X, Pan Y, Qu J. Photonic thermometer with a sub-millikelvin resolution and broad temperature range by waveguide-microring Fano resonance. Optics Express, 2020, 28(9): 12599–12608
CrossRef Pubmed Google scholar
[39]
Chang C M, Solgaard O. Fano resonances in integrated silicon Bragg reflectors for sensing applications. Optics Express, 2013, 21(22): 27209–27218
CrossRef Pubmed Google scholar
[40]
Zhao G, Zhao T, Xiao H, Liu Z, Liu G, Yang J, Ren Z, Bai J, Tian Y. Tunable Fano resonances based on microring resonator with feedback coupled waveguide. Optics Express, 2016, 24(18): 20187–20195
CrossRef Pubmed Google scholar
[41]
Zhou L, Poon A W. Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers. Optics Letters, 2007, 32(7): 781–783
[42]
Zheng S, Ruan Z, Gao S, Long Y, Li S, He M, Zhou N, Du J, Shen L, Cai X, Wang J. Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform. Optics Express, 2017, 25(21): 25655–25662
CrossRef Pubmed Google scholar
[43]
Cheng Z, Dong J, Zhang X. Ultra-compact optical switch using single semi-symmetric Fano nanobeam cavity. Optics Letters, 2020, 45(8): 2363
CrossRef Google scholar
[44]
Dong G, Wang Y, Zhang X. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity. Optics Letters, 2018, 43(24): 5977
[45]
Zhang W, Yao J. Thermally tunable ultracompact Fano resonator on a silicon photonic chip. Optics Letters, 2018, 43(21): 5415–5418
CrossRef Pubmed Google scholar
[46]
Li S, Zhang Y, Song X, Wang Y, Yu L. Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system. Optics Express, 2016, 24(14): 15351–15361
CrossRef Pubmed Google scholar
[47]
Zhu B, Zhang W, Pan S, Yao J. High-sensitivity instantaneous microwave frequency measurement based on a silicon photonic integrated fano resonator. Journal of Lightwave Technology, 2019, 37(11): 2527–2533
CrossRef Google scholar
[48]
Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S. Fano resonances in photonics. Nature Photonics, 2017, 11: 543–554
[49]
Chen J, Zhou L, Zhou G, Zhou Y, Zhong Y, Liu S, Guo Y, Liu L. Silicon Mach-Zehnder modulator using a highly-efficient L-shape PN junction. In: Proceedings of the 10th International Conference on Information Optics and Photonics (CIOP). Beijing: SPIE, 2018, 55
[50]
Li P, Chen H, Wang X, Yu H, Chen M, Xie S. Photonic generation and transmission of 2-Gbit/s power-efficient IR-UWB signals employing an electro-optic phase modulator. IEEE Photonics Technology Letters, 2013, 25(2): 144–146
CrossRef Google scholar

Acknowledgements

This work was supported in part by the National Key Research and Development Program (Nos. 2019YFB2203203 and 2018YFB2201702), the National Natural Science Foundation of China (NSFC) (Grant Nos. 61705129 and 61535006), the Shanghai Municipal Science and Technology Major Project (No. 2017SHZDZX03), and the Open Project Program of Wuhan National Laboratory for Optoelectronics (No. 2019WNLOKF004).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2479 KB)

Accesses

Citations

Detail

Sections
Recommended

/