Recent advances, challenges, and opportunities of inorganic nanoscintillators

Santosh K. GUPTA, Yuanbing MAO

PDF(4241 KB)
PDF(4241 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (2) : 156-187. DOI: 10.1007/s12200-020-1003-5
REVIEW ARTICLE
REVIEW ARTICLE

Recent advances, challenges, and opportunities of inorganic nanoscintillators

Author information +
History +

Abstract

This review article highlights the exploration of inorganic nanoscintillators for various scientific and technological applications in the fields of radiation detection, bioimaging, and medical theranostics. Various aspects of nanoscintillators pertaining to their fundamental principles, mechanism, structure, applications are briefly discussed. The mechanisms of inorganic nanoscintillators are explained based on the fundamental principles, instrumentation involved, and associated physical and chemical phenomena, etc. Subsequently, the promise of nanoscintillators over the existing single-crystal scintillators and other types of scintillators is presented, enabling their development for multifunctional applications. The processes governing the scintillation mechanisms in nanodomains, such as surface, structure, quantum, and dielectric confinement, are explained to reveal the underlying nanoscale scintillation phenomena. Additionally, suitable examples are provided to explain these processes based on the published data. Furthermore, we attempt to explain the different types of inorganic nanoscintillators in terms of the powder nanoparticles, thin films, nanoceramics, and glasses to ensure that the effect of nanoscience in different nanoscintillator domains can be appreciated. The limitations of nanoscintillators are also highlighted in this review article. The advantages of nanostructured scintillators, including their property-driven applications, are also explained. This review article presents the considerable application potential of nanostructured scintillators with respect to important aspects as well as their physical and application significance in a concise manner.

Graphical abstract

Keywords

scintillators / nanoscintillators / inorganic / photoluminescence / radioluminescence

Cite this article

Download citation ▾
Santosh K. GUPTA, Yuanbing MAO. Recent advances, challenges, and opportunities of inorganic nanoscintillators. Front. Optoelectron., 2020, 13(2): 156‒187 https://doi.org/10.1007/s12200-020-1003-5

References

[1]
Kamkaew A, Chen F, Zhan Y, Majewski R L, Cai W. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano, 2016, 10(4): 3918–3935
CrossRef Pubmed Google scholar
[2]
Birowosuto M D, Cortecchia D, Drozdowski W, Brylew K, Lachmanski W, Bruno A, Soci C. X-ray scintillation in lead halide perovskite crystals. Scientific Reports, 2016, 6(1): 37254
CrossRef Pubmed Google scholar
[3]
Tsubota Y, Kaneko J H, Higuchi M, Nishiyama S, Ishibashi H. High-temperature scintillation properties of orthorhombic Gd2Si2O7 aiming at well logging. Applied Physics Express, 2015, 8(6): 062602
CrossRef Google scholar
[4]
Lecoq P. Development of new scintillators for medical applications. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 809: 130–139
CrossRef Google scholar
[5]
Jacobsohn L G, Sprinkle K B, Roberts S A, Kucera C J, James T L, Yukihara E G, DeVol T A, Ballato J. Fluoride nanoscintillators. Journal of Nanomaterials, 2011, 2011: 1
CrossRef Google scholar
[6]
Rodnyi P A. Physical Processes in Inorganic Scintillators. Boca Raton: CRC Press, 1997
[7]
Lee S K, Kang S Y, Jang D Y, Lee C H, Kang S M. Comparison of new simple methods in fabricating ZnS (Ag) scintillators for detecting alpha particles. Nuclear science and technology, 2011, 1: 194–197
[8]
Knoll G F. Radiation Detection and Measurement. New York: John Wiley & Sons, 2010
[9]
Bizarri G. Scintillation mechanisms of inorganic materials: from crystal characteristics to scintillation properties. Journal of Crystal Growth, 2010, 312(8): 1213–1215
CrossRef Google scholar
[10]
Shockley W. Problems related top-n junctions in silicon. Czechoslovak Journal of Physics, 1961, 11(2): 81–121
CrossRef Google scholar
[11]
Robbins D. On predicting the maximum efficiency of phosphor systems excited by ionizing radiation. Journal of the Electrochemical Society, 1980, 127(12): 2694–2702
CrossRef Google scholar
[12]
Blasse G. Search for new inorganic scintillators. IEEE Transactions on Nuclear Science, 1991, 38(1): 30–31
CrossRef Google scholar
[13]
Blasse G. Scintillator materials. Chemistry of Materials, 1994, 6(9): 1465–1475
CrossRef Google scholar
[14]
Blasse G. Luminescent materials: is there still news? Journal of Alloys and Compounds, 1995, 225(1–2): 529–533
CrossRef Google scholar
[15]
Derenzo S, Weber M, Bourret-Courchesne E, Klintenberg M. The quest for the ideal inorganic scintillator. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1–2): 111–117
CrossRef Google scholar
[16]
Derenzo S E, Moses W, Cahoon J, Perera R, Litton J. Prospects for new inorganic scintillators. IEEE Transactions on Nuclear Science, 1990, 37(2): 203–208
CrossRef Google scholar
[17]
Ishii M, Kobayashi M. Single crystals for radiation detectors. Progress in Crystal Growth and Characterization of Materials, 1992, 23: 245–311
CrossRef Google scholar
[18]
Milbrath B D, Peurrung A J, Bliss M, Weber W J. Radiation detector materials: an overview. Journal of Materials Research, 2008, 23(10): 2561–2581
CrossRef Google scholar
[19]
Liu C, Li Z, Hajagos T J, Kishpaugh D, Chen D Y, Pei Q. Transparent ultra-high-loading quantum dot/polymer nanocomposite monolith for gamma scintillation. ACS Nano, 2017, 11(6): 6422–6430
CrossRef Pubmed Google scholar
[20]
Heath R, Hofstadter R, Hughes E. Inorganic scintillators: a review of techniques and applications. Nuclear Instruments and Methods, 1979, 162(1–3): 431–476
CrossRef Google scholar
[21]
Weber M J. Inorganic scintillators: today and tomorrow. Journal of Luminescence, 2002, 100(1–4): 35–45
CrossRef Google scholar
[22]
Gupta T K. Characterization of Radiation Detectors (Scintillators) Used in Nuclear Medicine, Radiation, Ionization, and Detection in Nuclear Medicine. Berlin: Springer, 2013, 367–449
[23]
SyS C. Inorganic Scintillator Detectors. Available online via Caensys website
[24]
Lecoq P, Gektin A, Korzhik M. Influence of Crystal Structure Defects on Scintillation Properties. In: Inorganic Scintillators for Detector Systems. Particle Acceleration and Detection. Berlin: Springer, 2017, 197–252
[25]
Nikl M, Laguta V, Vedda A. Complex oxide scintillators: material defects and scintillation performance. Physica Status Solidi (B), 2008, 245: 1701–1722
[26]
Lisitsyn V, Lisitsyna L, Polisadova E. Complex defects in crystal scintillation materials and phosphors. IOP Conference Series. Materials Science and Engineering, 2017, 168: 012086
CrossRef Google scholar
[27]
Kuklja M M. Defects in yttrium aluminium perovskite and garnet crystals: atomistic study. Journal of Physics Condensed Matter, 2000, 12(13): 2953–2967
CrossRef Google scholar
[28]
Nikolopoulos D, Valais I, Michail C, Bakas A, Fountzoula C, Cantzos D, Bhattacharyya D, Sianoudis I, Fountos G, Yannakopoulos P, Panayiotakis G, Kandarakis I. Radioluminescence properties of the CdSe/ZnS quantum dot nanocrystals with analysis of long-memory trends. Radiation Measurements, 2016, 92: 19–31
CrossRef Google scholar
[29]
Osakada Y, Pratx G, Sun C, Sakamoto M, Ahmad M, Volotskova O, Ong Q, Teranishi T, Harada Y, Xing L, Cui B. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters. Chemical Communications, 2014, 50(27): 3549–3551
CrossRef Pubmed Google scholar
[30]
Osakada Y, Pratx G, Hanson L, Solomon P E, Xing L, Cui B. X-ray excitable luminescent polymer dots doped with an iridium(III) complex. Chemical Communications, 2013, 49(39): 4319–4321
CrossRef Pubmed Google scholar
[31]
Wang C, Volotskova O, Lu K, Ahmad M, Sun C, Xing L, Lin W. Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal-organic frameworks for highly efficient X-ray scintillation. Journal of the American Chemical Society, 2014, 136(17): 6171–6174
CrossRef Pubmed Google scholar
[32]
Yaffe M J, Rowlands J A. X-ray detectors for digital radiography. Physics in Medicine and Biology, 1997, 42(1): 1–39
CrossRef Pubmed Google scholar
[33]
Gupta S K, Zuniga J P, Abdou M, Mao Y. Thermal annealing effects on La2Hf2O7:Eu3+ nanoparticles: a curious case study of structural evolution and site-specific photo- and radio-luminescence. Inorganic Chemistry Frontiers, 2018, 5(10): 2508–2521
CrossRef Google scholar
[34]
Gupta S K, Zuniga J P, Ghosh P S, Abdou M, Mao Y. Correlating structure and luminescence properties of undoped and Eu3+-doped La2Hf2O7 nanoparticles prepared with different coprecipitating pH values through experimental and theoretical studies. Inorganic Chemistry, 2018, 57(18): 11815–11830
CrossRef Pubmed Google scholar
[35]
Pokhrel M, Gupta S K, Wahid K, Mao Y. Pyrochlore rare-earth hafnate RE2Hf2O7 (RE= La and Pr) nanoparticles stabilized by molten-salt synthesis at low temperature. Inorganic Chemistry, 2019, 58(2): 1241–1251
CrossRef Pubmed Google scholar
[36]
Zuniga J P, Gupta S K, Pokhrel M, Mao Y. Exploring the optical properties of La2Hf2O7:Pr3+ nanoparticles under UV and X-ray excitation for potential lighting and scintillating applications. New Journal of Chemistry, 2018, 42(12): 9381–9392
CrossRef Google scholar
[37]
Zuniga J P, Gupta S K, Abdou M, Mao Y. Effect of molten salt synthesis processing duration on the photo- and radioluminescence of UV-, visible-, and X-ray-excitable La2Hf2O7:Eu3+ nanoparticles. ACS Omega, 2018, 3(7): 7757–7770
CrossRef Pubmed Google scholar
[38]
Pokhrel M, Alcoutlabi M, Mao Y. Optical and X-ray induced luminescence from Eu3+ doped La2Zr2O7 nanoparticles. Journal of Alloys and Compounds, 2017, 693: 719–729
CrossRef Google scholar
[39]
Pokhrel M, Burger A, Groza M, Mao Y. Enhance the photoluminescence and radioluminescence of La2Zr2O7:Eu3+ core nanoparticles by coating with a thin Y2O3 shell. Optical Materials, 2017, 68: 35–41
CrossRef Google scholar
[40]
Wahid K, Pokhrel M, Mao Y. Structural, photoluminescence and radioluminescence properties of Eu3+ doped La2Hf2O7 nanoparticles. Journal of Solid State Chemistry, 2017, 245: 89–97
CrossRef Google scholar
[41]
Gupta S K, Abdou M, Ghosh P S, Zuniga J P, Mao Y. Thermally induced disorder-order phase transition of Gd2Hf2O7:Eu3+ nanoparticles and its implication on photo- and radioluminescence. ACS Omega, 2019, 4(2): 2779–2791
CrossRef Pubmed Google scholar
[42]
Gupta S K, Abdou M, Zuniga J P, Ghosh P S, Molina E, Xu B, Chipara M, Mao Y. Roles of oxygen vacancies and pH induced size changes on photo- and radioluminescence of undoped and Eu3+-doped La2Zr2O7 nanoparticles. Journal of Luminescence, 2019, 209: 302–315
CrossRef Google scholar
[43]
Abdou M, Gupta S K, Zuniga J P, Mao Y. On structure and phase transformation of uranium doped La2Hf2O7 nanoparticles as an efficient nuclear waste host. Materials Chemistry Frontiers, 2018, 2(12): 2201–2211
CrossRef Google scholar
[44]
Gupta S K, Abdou M, Zuniga J P, Puretzky A A, Mao Y. Samarium-activated La2Hf2O7 nanoparticles as multifunctional phosphors. ACS Omega, 2019, 4(19): 17956–17966
CrossRef Pubmed Google scholar
[45]
Gupta S K, Zuniga J P, Abdou M, Ghosh P S, Mao Y. Optical properties of undoped, Eu3+ doped and Li+ co-doped Y2Hf2O7 nanoparticles and polymer nanocomposite films. Inorganic Chemistry Frontiers, 2020, 7(2): 505–518
CrossRef Google scholar
[46]
Zuniga J P, Gupta S K, Abdou M, De Santiago H A, Puretzky A A, Thomas M P, Guiton B S, Liu J, Mao Y. Size, structure, and luminescence of Nd2Zr2O7 nanoparticles by molten salt synthesis. Journal of Materials Science, 2019, 54(19): 12411–12423
CrossRef Google scholar
[47]
Abdou M, Gupta S K, Zuniga J P, Mao Y. Insight into the effect of A-site cations on structural and optical properties of RE2Hf2O7:U nanoparticles. Journal of Luminescence, 2019, 210: 425–434
CrossRef Google scholar
[48]
Gupta S K, Penilla Garcia M A, Zuniga J P, Abdou M, Mao Y. Visible and ultraviolet upconversion and near infrared downconversion luminescence from lanthanide doped La2Zr2O7 nanoparticles. Journal of Luminescence, 2019, 214: 116591
CrossRef Google scholar
[49]
Gupta S K, Zuniga J P, Abdou M, Thomas M P, De Alwis Goonatilleke M, Guiton B S, Mao Y. Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators. Chemical Engineering Journal, 2020, 379: 122314
CrossRef Google scholar
[50]
Penilla Garcia M A, Gupta S K, Mao Y. Effects of molten-salt processing parameters on the structural and optical properties of preformed La2Zr2O7:Eu3+ nanoparticles. Ceramics International, 2020, 46(2): 1352–1361
CrossRef Google scholar
[51]
Jagtap S, Chopade P, Tadepalli S, Bhalerao A, Gosavi S. A review on the progress of ZnSe as inorganic scintillator. Opto-Electronics Review, 2019, 27(1): 90–103
CrossRef Google scholar
[52]
Chen Q, Wu J, Ou X, Huang B, Almutlaq J, Zhumekenov A A, Guan X, Han S, Liang L, Yi Z, Li J, Xie X, Wang Y, Li Y, Fan D, Teh D B L, All A H, Mohammed O F, Bakr O M, Wu T, Bettinelli M, Yang H, Huang W, Liu X. All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561(7721): 88–93
CrossRef Pubmed Google scholar
[53]
Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin W J, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Cs2AgBiB6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732
CrossRef Google scholar
[54]
Zhang Y, Sun R, Ou X, Fu K, Chen Q, Ding Y, Xu L J, Liu L, Han Y, Malko A V, Liu X, Yang H, Bakr O M, Liu H, Mohammed O F. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano, 2019, 13(2): 2520–2525
CrossRef Pubmed Google scholar
[55]
Fu H. Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells. Solar Energy Materials and Solar Cells, 2019, 193: 107–132
CrossRef Google scholar
[56]
Wang X, Zhang T, Lou Y, Zhao Y. All-inorganic lead-free perovskites for optoelectronic applications. Materials Chemistry Frontiers, 2019, 3(3): 365–375
CrossRef Google scholar
[57]
Yamamoto S, Kamada K, Yoshikawa A. Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. Scientific Reports, 2018, 8(1): 3194
CrossRef Pubmed Google scholar
[58]
Berneking A, Gola A, Ferri A, Finster F, Rucatti D, Paternoster G, Shah N J, Piemonte C, Lerche C. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888: 44–52
CrossRef Google scholar
[59]
Hsu C C, Lin S L, Chang C A. Lanthanide-doped core-shell-shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single X-ray excitation source. ACS Applied Materials & Interfaces, 2018, 10(9): 7859–7870
CrossRef Pubmed Google scholar
[60]
Li X, Xue Z, Jiang M, Li Y, Zeng S, Liu H. Soft X-ray activated NaYF4:Gd/Tb scintillating nanorods for in vivo dual-modal X-ray/X-ray-induced optical bioimaging. Nanoscale, 2018, 10(1): 342–350
CrossRef Pubmed Google scholar
[61]
Hu C, Zhang L, Zhu R Y, Chen A, Wang Z, Ying L, Yu Z. Ultrafast inorganic scintillators for GHz hard X-Ray imaging. IEEE Transactions on Nuclear Science, 2018, 65(8): 2097–2104
CrossRef Google scholar
[62]
Miller S R, Bhandari H B, Bhattacharya P, Brecher C, Crespi J, Couture A, Dinca C, Rommel M, Nagarkar V V. Reduced afterglow codoped CsI:Tl for high energy imaging. IEEE Transactions on Nuclear Science, 2018, 65(8): 2105–2108
CrossRef Google scholar
[63]
Blasse G, Grabmaier B. Luminescent Materials. Berlin: Springer Science & Business Media, 2012
[64]
Grabmaier B, Rossner W, Leppert J. Ceramic scintillators for X-Ray computed tomography. Physica Status Solidi (A), 1992, 130: K183–K187
[65]
Greskovich C, Duclos S. Ceramic scintillators. Annual Review of Materials Science, 1997, 27(1): 69–88
CrossRef Google scholar
[66]
Buşe G, Giuliani A, De Marcillac P, Marnieros S, Nones C, Novati V, Olivieri E, Poda D, Redon T, Sand J B, Veber P, Velázquez M, Zolotarova A S. First scintillating bolometer tests of a CLYMENE R&D on Li2MoO4 scintillators towards a large-scale double-beta decay experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 891: 87–91
[67]
Zhu M, Qi H, Pan M, Hou Q, Jiang B, Jin Y, Han H, Song Z, Zhang H. Growth and luminescent properties of Yb:YAG and Ca co-doped Yb:YAG ultrafast scintillation crystals. Journal of Crystal Growth, 2018, 490: 51–55
CrossRef Google scholar
[68]
Khan A, Rooh G, Kim H, Kim S. Ce3+-activated Tl2GdCl5: novel halide scintillator for X-ray and γ-ray detection. Journal of Alloys and Compounds, 2018, 741: 878–882
CrossRef Google scholar
[69]
Jung J, Hirata G, Gundiah G, Derenzo S, Wrasidlo W, Kesari S, Makale M, McKittrick J. Identification and development of nanoscintillators for biotechnology applications. Journal of Luminescence, 2014, 154: 569–577
CrossRef Google scholar
[70]
Klein J S, Sun C, Pratx G. Radioluminescence in biomedicine: physics, applications, and models. Physics in Medicine and Biology, 2019, 64(4): 04TR01
CrossRef Pubmed Google scholar
[71]
Growing Single Crystals. In: Carter C B, Norton M G, eds. Ceramic Materials: Science and Engineering. New York: Springer, 2007, 507–526
[72]
Savytskii D, Knorr B, Dierolf V, Jain H. Demonstration of single crystal growth via solid-solid transformation of a glass. Scientific Reports, 2016, 6(1): 23324
CrossRef Pubmed Google scholar
[73]
Kivambe M, Aissa B, Tabet N. Emerging technologies in crystal growth of photovoltaic silicon: progress and challenges. Energy Procedia, 2017, 130: 7–13
CrossRef Google scholar
[74]
Zhang C, Lin J. Defect-related luminescent materials: synthesis, emission properties and applications. Chemical Society Reviews, 2012, 41(23): 7938–7961
CrossRef Pubmed Google scholar
[75]
Persyk D E, Schardt M A, Moi T E, Ritter K A, Muehllehner G. Research on pure sodium iodide as a practical scintillator. IEEE Transactions on Nuclear Science, 1980, 27(1): 167–171
CrossRef Google scholar
[76]
Andryushchenko L, Grinev B, Udovichenko L, Litichevsky A. Improved NaI(Tl) scintillation detectors. Instruments and Experimental Techniques, 1997, 40: 59–63
[77]
Verger L, Ouvrier-Buffet P, Mathy F, Montemont G, Picone M, Rustique J, Riffard C. Performance of a new CdZnTe portable spectrometric system for high energy applications. IEEE Transactions on Nuclear Science, 2005, 52(5): 1733–1738
CrossRef Google scholar
[78]
Berninger W. Monolithic gamma detector arrays and position sensitive detectors in high purity germanium. IEEE Transactions on Nuclear Science, 1974, 21(1): 374–378
CrossRef Google scholar
[79]
Milbrath B D, Peurrung A J, Bliss M, Weber W J. Radiation detector materials: an overview. Journal of Materials Research, 2008, 23(10): 2561–2581
CrossRef Google scholar
[80]
Nikl M. Scintillation detectors for X-rays. Measurement Science & Technology, 2006, 17(4): R37–R54
CrossRef Google scholar
[81]
Greskovich C, Duclos S. Ceramic scinitillators. Annual Review of Materials Science, 1997, 27(1): 69–88
CrossRef Google scholar
[82]
Jung J Y, Hirata G A, Gundiah G, Derenzo S, Wrasidlo W, Kesari S, Makale M T, McKittrick J. Identification and development of nanoscintillators for biotechnology applications. Journal of Luminescence, 2014, 154: 569–577
CrossRef Google scholar
[83]
Brown S S, Rondinone A J, Dai S. Applications of Nanoparticles in Scintillation Detectors. Washington: ACS Publications, 2007
[84]
Liu C, Li Z, Hajagos T J, Kishpaugh D, Chen D Y, Pei Q. Transparent ultra-high-loading quantum dot/polymer nanocomposite monolith for gamma scintillation. ACS Nano, 2017, 11(6): 6422–6430
CrossRef Pubmed Google scholar
[85]
Yildirim S, Asal E C K, Ertekin K, Celik E. Luminescent properties of scintillator nanophosphors produced by flame spray pyrolysis. Journal of Luminescence, 2017, 187: 304–312
CrossRef Google scholar
[86]
Hernandez-Sanchez B A, Boyle T J, Villone J, Yang P, Kinnan M, Hoppe S, Thoma S, Hattar K M, Doty F P. Size effects on the properties of high Z scintillator materials. In: Proceedings of Penetrating Radiation Systems and Applications XIII, International Society for Optics and Photonics, 2012, 85090G
[87]
Stouwdam J W, van Veggel F C. Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir, 2004, 20(26): 11763–11771
CrossRef Pubmed Google scholar
[88]
Kömpe K, Lehmann O, Haase M. Spectroscopic distinction of surface and volume ions in cerium (III)-and terbium (III)-containing core and core/shell nanoparticles. Chemistry of Materials, 2006, 18(18): 4442–4446
CrossRef Google scholar
[89]
Cooke D, Lee J K, Bennett B, Groves J, Jacobsohn L, McKigney E, Muenchausen R, Nastasi M, Sickafus K, Tang M, Valdez J A, Kim J Y, Hong K S. Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y2SiO5:Ce nanophosphors. Applied Physics Letters, 2006, 88(10): 103108
CrossRef Google scholar
[90]
Muenchausen R, Jacobsohn L, Bennett B, McKigney E, Smith J, Cooke D. A novel method for extracting oscillator strength of select rare-earth ion optical transitions in nanostructured dielectric materials. Solid State Communications, 2006, 139(10): 497–500
CrossRef Google scholar
[91]
Kyung Cha B, Jun Lee S, Muralidharan P, Yul Kim J, Kim D K, Cho G. Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 633: S294–S296
CrossRef Google scholar
[92]
Klassen N V, Kedrov V V, Ossipyan Y A, Shmurak S Z, Shmyt Ko I M, Krivko O A, Kudrenko E A, Kurlov V N, Kobelev N P, Kiselev A P, Bozhko S I. Nanoscintillators for microscopic diagnostics of biological and medical objects and medical therapy. IEEE Transactions on Nanobioscience, 2009, 8(1): 20–32
CrossRef Pubmed Google scholar
[93]
Scaffidi J P, Gregas M K, Lauly B, Zhang Y, Vo-Dinh T. Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano, 2011, 5(6): 4679–4687
CrossRef Pubmed Google scholar
[94]
Roy I, Ohulchanskyy T Y, Pudavar H E, Bergey E J, Oseroff A R, Morgan J, Dougherty T J, Prasad P N. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. Journal of the American Chemical Society, 2003, 125(26): 7860–7865
CrossRef Pubmed Google scholar
[95]
Guss P, Guise R, Yuan D, Mukhopadhyay S, O’Brien R, Lowe D, Kang Z, Menkara H, Nagarkar V V. Lanthanum halide nanoparticle scintillators for nuclear radiation detection. Journal of Applied Physics, 2013, 113(6): 064303
CrossRef Google scholar
[96]
Walters R J, Kalkman J, Polman A, Atwater H A, de Dood M J A. Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Physical Review B, 2006, 73(13): 132302
CrossRef Google scholar
[97]
Balazs A C, Emrick T, Russell T P. Nanoparticle polymer composites: where two small worlds meet. Science, 2006, 314(5802): 1107–1110
CrossRef Pubmed Google scholar
[98]
Létant S E, Wang T F. Semiconductor quantum dot scintillation under γ-ray irradiation. Nano Letters, 2006, 6(12): 2877–2880
CrossRef Pubmed Google scholar
[99]
Liu C. High-Z nanoparticle/polymer nanocomposites for gamma-ray scintillation detectors. Dissertation for the Doctoral Degree. Los Angeles: University of California, 2017
[100]
Novak B M. Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Advanced Materials, 1993, 5(6): 422–433
CrossRef Google scholar
[101]
Dujardin C, Amans D, Belsky A, Chaput F, Ledoux G, Pillonnet A. Luminescence and scintillation properties at the nanoscale. IEEE Transactions on Nuclear Science, 2010, 57(3): 1348–1354
CrossRef Google scholar
[102]
Braverman J B, Fabris L, Newby J, Hornback D, Ziock K P. Three-dimensional event localization in bulk scintillator crystals using optical coded apertures. In: Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014, 1–8
[103]
Braverman J B. Event localization in bulk scintillator crystals using optical coded apertures. Dissertation for the Doctoral Degree. Knoxville: University of Tennessee, 2015
[104]
Melcher C. Perspectives on the future development of new scintillators. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1–2): 6–14
CrossRef Google scholar
[105]
Taheri A, Saramad S, Setayeshi S. Geant4 simulation of zinc oxide nanowires in anodized aluminum oxide template as a low energy X-ray scintillator detector. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 701: 30–36
CrossRef Google scholar
[106]
Taheri A, Saramad S, Ghalenoei S, Setayeshi S. Taheri-Saramad X-ray detector (TSXD): a novel high spatial resolution X-ray imager based on ZnO nano scintillator wires in polycarbonate membrane. Review of Scientific Instruments, 2014, 85(1): 013112
CrossRef Pubmed Google scholar
[107]
Ashworth C. Super scintillators. Nature Reviews. Materials, 2018, 3(10): 355
CrossRef Google scholar
[108]
Alves L A, Ferreira L B, Pacheco P F, Mendivelso E A C, Teixeira P C N, Faria R X. Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators. Oncotarget, 2018, 9(38): 25342–25354
CrossRef Pubmed Google scholar
[109]
Winterer M, Nitsche R, Hahn H. Local structure in nanocrystalline ZrO2 and Y2O3 by EXAFS. Nanostructured Materials, 1997, 9(1–8): 397–400
CrossRef Google scholar
[110]
Nigam S, Sudarsan V, Majumder C, Vatsa R. Structural differences existing in bulk and nanoparticles of Y2Sn2O7: investigated by experimental and theoretical methods. Journal of Solid State Chemistry, 2013, 200: 202–208
CrossRef Google scholar
[111]
Cutler P A. Synthesis and scintillation of single crystal and polycrystalline rare-earth-activated lutetium aluminum garnet. Dissertation for the Master Degree. Knoxville: University of Tennessee, 2010
[112]
Ryskin N N, Dorenbos P, Eijk C W E, Batygov S K. Scintillation properties of Lu3Al5-xScxO12 crystals. Journal of Physics Condensed Matter, 1994, 6(47): 10423–10434
CrossRef Google scholar
[113]
Zhuravleva M, Yang K, Spurrier-Koschan M, Szupryczynski P, Yoshikawa A, Melcher C. Crystal growth and characterization of LuAG:Ce:Tb scintillator. Journal of Crystal Growth, 2010, 312(8): 1244–1248
CrossRef Google scholar
[114]
Edgar A, Bartle M, Varoy C, Raymond S, Williams G. Structure and scintillation properties of cerium-doped barium chloride ceramics: effects of cation and anion substitution. IEEE Transactions on Nuclear Science, 2010, 57(3): 1218–1222
CrossRef Google scholar
[115]
Peng X, Schlamp M C, Kadavanich A V, Alivisatos A P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. Journal of the American Chemical Society, 1997, 119(30): 7019–7029
CrossRef Google scholar
[116]
Ledoux G, Gong J, Huisken F. Effect of passivation and aging on the photoluminescence of silicon nanocrystals. Applied Physics Letters, 2001, 79(24): 4028–4030
CrossRef Google scholar
[117]
Huignard A, Buissette V, Franville A C, Gacoin T, Boilot J P. Emission processes in YVO4:Eu nanoparticles. Journal of Physical Chemistry B, 2003, 107(28): 6754–6759
CrossRef Google scholar
[118]
Wang F, Wang J, Liu X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angewandte Chemie, 2010, 49(41): 7456–7460
CrossRef Pubmed Google scholar
[119]
Han J, Hirata G, Talbot J, McKittrick J. Luminescence enhancement of Y2O3:Eu3+ and Y2SiO5:Ce3+,Tb3+ core particles with SiO2 shells. Materials Science and Engineering B, 2011, 176(5): 436–441
CrossRef Google scholar
[120]
Li G Z, Yu M, Wang Z L, Lin J, Wang R S, Fang J. Sol–gel fabrication and photoluminescence properties of SiO2@Gd2O3: Eu3+ core-shell particles. Journal of Nanoscience and Nanotechnology, 2006, 6(5): 1416–1422
CrossRef Pubmed Google scholar
[121]
Bao A, Lai H, Yang Y, Liu Z, Tao C, Yang H. Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles. Journal of Nanoparticle Research, 2010, 12(2): 635–643
CrossRef Google scholar
[122]
Yu M, Wang H, Lin C, Li G, Lin J. Sol–gel synthesis and photoluminescence properties of spherical SiO2@LaPO4:Ce3+/Tb3+ particles with a core–shell structure. Nanotechnology, 2006, 17(13): 3245–3252
CrossRef Google scholar
[123]
Osseni S A, Lechevallier S, Verelst M, Dujardin C, Dexpert-Ghys J, Neumeyer D, Leclercq M, Baaziz H, Cussac D, Santran V, Mauricot R. New nanoplatform based on Gd2O2S:Eu3+ core: synthesis, characterization and use for in vitro bio-labelling. Journal of Materials Chemistry, 2011, 21(45): 18365–18372
CrossRef Google scholar
[124]
Ledoux G, Mercier B, Louis C, Dujardin C, Tillement O, Perriat P. Synthesis and optical characterization of Gd2O3:Eu3+ nanocrystals: surface states and VUV excitation. Radiation Measurements, 2004, 38(4–6): 763–766
CrossRef Google scholar
[125]
Bol A A, Meijerink A. Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+. 1. Surface passivation and Mn2+ concentration. Journal of Physical Chemistry B, 2001, 105(42): 10197–10202
CrossRef Google scholar
[126]
Pokhrel M, Burger A, Groza M, Mao Y. Enhance the photoluminescence and radioluminescence of La2Zr2O7:Eu3+ core nanoparticles by coating with a thin Y2O3 shell. Optical Materials, 2017, 68: 35–41
CrossRef Google scholar
[127]
Holloway P H, Davidson M, Jacobsohn L G. Strategy for enhanced light output from luminescent nanoparticles. Technical report. Gainesville: Florida University, 2013
[128]
Jacobsohn L, Kucera C, Sprinkle K, Roberts S, Yukihara E, DeVol T, Ballato J. Scintillation of nanoparticles: case study of rare earth doped fluorides. Nuclear Science Symposium Conference Record (NSS/MIC), IEEE, 2010, 1600–1602
[129]
Gupta S K, Sudarshan K, Ghosh P, Sanyal K, Srivastava A, Arya A, Pujari P, Kadam R. Luminescence of undoped and Eu3+ doped nanocrystalline SrWO4 scheelite: time resolved fluorescence complimented by DFT and positron annihilation spectroscopic studies. RSC Advances, 2016, 6(5): 3792–3805
CrossRef Google scholar
[130]
Gupta S K, Sudarshan K, Ghosh P, Srivastava A, Bevara S, Pujari P, Kadam R. Role of various defects in the photoluminescence characteristics of nanocrystalline Nd2Zr2O7: an investigation through spectroscopic and DFT calculations. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(22): 4988–5000
CrossRef Google scholar
[131]
Gupta S K, Sudarshan K, Srivastava A, Kadam R. Visible light emission from bulk and nano SrWO4: possible role of defects in photoluminescence. Journal of Luminescence, 2017, 192: 1220–1226
CrossRef Google scholar
[132]
Vetrone F, Boyer J C, Capobianco J A, Speghini A, Bettinelli M. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+. Chemistry of Materials, 2003, 15(14): 2737–2743
CrossRef Google scholar
[133]
Yang L, Li L, Zhao M, Li G. Size-induced variations in bulk/surface structures and their impact on photoluminescence properties of GdVO4:Eu3+ nanoparticles. Physical Chemistry Chemical Physics, 2012, 14(28): 9956–9965
CrossRef Pubmed Google scholar
[134]
Jacobsohn L, Sprinkle K, Kucera C, James T, Roberts S, Qian H, Yukihara E, DeVol T, Ballato J. Synthesis, luminescence and scintillation of rare earth doped lanthanum fluoride nanoparticles. Optical Materials, 2010, 33(2): 136–140
CrossRef Google scholar
[135]
Klassen N, Kedrov V, Kurlov V, Ossipyan Y A, Shmurak S, Shmyt’ko I, Strukova G, Kobelev N, Kudrenko E, Krivko O, Kiselev A P, Bazhenov A V, Fursova T N. Advantages and problems of nanocrystalline scintillators. IEEE Transactions on Nuclear Science, 2008, 55(3): 1536–1541
CrossRef Google scholar
[136]
Cha B K, Lee S J, Muralidharan P, Kim J Y, Kim D K, Cho G. Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 633: S294–S296
CrossRef Google scholar
[137]
Hiyama F, Noguchi T, Koshimizu M, Kishimoto S, Haruki R, Nishikido F, Yanagida T, Fujimoto Y, Aida T, Takami S, Adschiri T, Asai K. X-ray detection capabilities of plastic scintillators incorporated with hafnium oxide nanoparticles surface-modified with phenyl propionic acid. Japanese Journal of Applied Physics, 2018, 57(1): 012601
CrossRef Google scholar
[138]
Reithmaier J P, Sęk G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 2004, 432(7014): 197–200
CrossRef Pubmed Google scholar
[139]
Klassen N, Shmyt’ko I, Strukova G, Kedrov V, Kobelev N, Kudrenko E, Kiseliov A, Prokopiuk N. Improvement of scintillation parameters in complex oxides by formation of nanocrystalline structures. In: Proceedings of 8th International SCINT Conference, 2005, 228–231
[140]
Wilkinson J, Ucer K, Williams R. The oscillator strength of extended exciton states and possibility for very fast scintillators. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1–2): 66–70
CrossRef Google scholar
[141]
Elliot R J, Loudon R. Theory of the absorption edge in semiconductors in a high magnetic field. Journal of Physics and Chemistry of Solids, 1960, 15: 196–207
[142]
Murray C, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715
CrossRef Google scholar
[143]
Milliron D J, Hughes S M, Cui Y, Manna L, Li J, Wang L W, Alivisatos A P. Colloidal nanocrystal heterostructures with linear and branched topology. Nature, 2004, 430(6996): 190–195
CrossRef Pubmed Google scholar
[144]
Costa-Fernández J M, Pereiro R, Sanz-Medel A. The use of luminescent quantum dots for optical sensing. Trends in Analytical Chemistry, 2006, 25(3): 207–218
CrossRef Google scholar
[145]
Henini M, Bugajski M. Advances in self-assembled semiconductor quantum dot lasers. Microelectronics Journal, 2005, 36(11): 950–956
CrossRef Google scholar
[146]
Létant S E, Wang T F. Semiconductor quantum dot scintillation under γ-ray irradiation. Nano Letters, 2006, 6(12): 2877–2880
CrossRef Pubmed Google scholar
[147]
Shibuya K, Koshimizu M, Murakami H, Muroya Y, Katsumura Y, Asai K. Development of ultra-fast semiconducting scintillators using quantum confinement effect. Japanese Journal of Applied Physics, 2004, 43(10B): L1333–L1336
CrossRef Google scholar
[148]
Liu B, Wu Q, Zhu Z, Cheng C, Gu M, Xu J, Chen H, Liu J, Chen L, Zhang Z, Ouyang X. Directional emission of quantum dot scintillators controlled by photonic crystals. Applied Physics Letters, 2017, 111(8): 081904
CrossRef Google scholar
[149]
Blasse G, Grabmaier B. Energy Transfer, Luminescent Materials. Berlin: Springer, 1994, 91–107
[150]
Wuister S F, de Mello Donega C, Meijerink A. Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media. Journal of Chemical Physics, 2004, 121(9): 4310–4315
CrossRef Pubmed Google scholar
[151]
Lamouche G, Lavallard P, Gacoin T. Optical properties of dye molecules as a function of the surrounding dielectric medium. Physical Review A, 1999, 59(6): 4668–4674
CrossRef Google scholar
[152]
Meltzer R, Feofilov S, Tissue B, Yuan H. Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium. Physical Review B, 1999, 60(20): R14012–R14015
CrossRef Google scholar
[153]
Dolgaleva K, Boyd R W, Milonni P W. Influence of local-field effects on the radiative lifetime of liquid suspensions of Nd:YAG nanoparticles. Journal of the Optical Society of America B, Optical Physics, 2007, 24(3): 516–521
CrossRef Google scholar
[154]
Chon B, Lim S J, Kim W, Seo J, Kang H, Joo T, Hwang J, Shin S K. Shell and ligand-dependent blinking of CdSe-based core/shell nanocrystals. Physical Chemistry Chemical Physics, 2010, 12(32): 9312–9319
CrossRef Pubmed Google scholar
[155]
Li J G, Sakka Y. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12). Science and Technology of Advanced Materials, 2015, 16(1): 014902
CrossRef Pubmed Google scholar
[156]
Seeley Z M, Cherepy N J, Payne S A. Expanded phase stability of Gd-based garnet transparent ceramic scintillators. Journal of Materials Research, 2014, 29(19): 2332–2337
CrossRef Google scholar
[157]
Nikl M, Kamada K, Babin V, Pejchal J, Pilarova K, Mihokova E, Beitlerova A, Bartosiewicz K, Kurosawa S, Yoshikawa A. Defect engineering in Ce-doped aluminum garnet single crystal scintillators. Crystal Growth & Design, 2014, 14(9): 4827–4833
CrossRef Google scholar
[158]
Nikl M, Yoshikawa A, Kamada K, Nejezchleb K, Stanek C R, Mares J A, Blazek K. Development of LuAG-based scintillator crystals: a review. Progress in Crystal Growth and Characterization of Materials, 2013, 59(2): 47–72
CrossRef Google scholar
[159]
Eagleman Y, Weber M, Chaudhry A, Derenzo S. Luminescence study of cerium-doped La2Hf2O7: effects due to trivalent and tetravalent cerium and oxygen vacancies. Journal of Luminescence, 2012, 132(11): 2889–2896
CrossRef Google scholar
[160]
Gupta S K, Zuniga J P, Ghosh P S, Abdou M, Mao Y. Correlating structure and luminescence properties of undoped and La2Hf2O7:Eu3+NPs prepared with different coprecipitating pH values through experimental and theoretical studies. Inorganic Chemistry, 2018, 57: 11815–11830
CrossRef Pubmed Google scholar
[161]
Cao J, Chen L, Chen W, Xu D, Sun X, Guo H. Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals. Optical Materials Express, 2016, 6(7): 2201–2206
CrossRef Google scholar
[162]
Schwartz K. Atomic Physics Methods in Modern Research. Berlin: Springer, 1997
[163]
Benitez E, Husk D, Schnatterly S, Tarrio C. A surface recombination model applied to large features in inorganic phosphor efficiency measurements in the soft X-ray region. Journal of Applied Physics, 1991, 70(6): 3256–3260
CrossRef Google scholar
[164]
Mikhailik V, Kraus H, Miller G, Mykhaylyk M, Wahl D. Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations. Journal of Applied Physics, 2005, 97(8): 083523
CrossRef Google scholar
[165]
Sen S, Tyagi M, Sharma K, Sarkar P S, Sarkar S, Basak C B, Pitale S, Ghosh M, Gadkari S C. Organic-inorganic composite films based on Gd3Ga3Al2O12:Ce scintillator nanoparticles for X-ray imaging applications. ACS Applied Materials & Interfaces, 2017, 9(42): 37310–37320
CrossRef Pubmed Google scholar
[166]
Demkiv T, Halyatkin O, Vistovskyy V, Gektin A, Voloshinovskii A. Luminescent and kinetic properties of the polystyrene composites based on BaF2 nanoparticles. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 810: 1–5
CrossRef Google scholar
[167]
Demkiv T, Halyatkin O, Vistovskyy V, Hevyk V, Yakibchuk P, Gektin A, Voloshinovskii A. X-ray excited luminescence of polystyrene composites loaded with SrF2 nanoparticles. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 847: 47–51
CrossRef Google scholar
[168]
Martins P, Martins P, Correia V, Rocha J, Lanceros-Mendez S. Gd2O3:Eu nanoparticle-based poly (vinylidene fluoride) composites for indirect X-ray detection. Journal of Electronic Materials, 2015, 44(1): 129–135
CrossRef Google scholar
[169]
Oliveira J, Martins P, Martins P, Correia V, Rocha J, Lanceros-Mendez S. Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors. Applied Physics A, Materials Science & Processing, 2015, 121(2): 581–587
CrossRef Google scholar
[170]
Kang Z, Zhang Y, Menkara H, Wagner B K, Summers C J, Lawrence W, Nagarkar V. CdTe quantum dots and polymer nanocomposites for X-ray scintillation and imaging. Applied Physics Letters, 2011, 98(18): 181914
CrossRef Pubmed Google scholar
[171]
Lawrence W G, Thacker S, Palamakumbura S, Riley K J, Nagarkar V V. Quantum dot-organic polymer composite materials for radiation detection and imaging. IEEE Transactions on Nuclear Science, 2012, 59(1): 215–221
CrossRef Google scholar
[172]
Chen S, Gaume R. Transparent bulk-size nanocomposites with high inorganic loading. Applied Physics Letters, 2015, 107(24): 241906
CrossRef Google scholar
[173]
Chen H, Rogalski M M, Anker J N. Advances in functional X-ray imaging techniques and contrast agents. Physical Chemistry Chemical Physics, 2012, 14(39): 13469–13486
CrossRef Pubmed Google scholar
[174]
Vistovskyy V, Zhyshkovych A, Halyatkin O, Mitina N, Zaichenko A, Rodnyi P, Vasil’ev A, Gektin A, Voloshinovskii A. The luminescence of BaF2 nanoparticles upon high-energy excitation. Journal of Applied Physics, 2014, 116(5): 054308
CrossRef Google scholar
[175]
Laval M, Moszyński M, Allemand R, Cormoreche E, Guinet P, Odru R, Vacher J. Barium fluoride—inorganic scintillator for subnanosecond timing. Nuclear Instruments and Methods in Physics Research, 1983, 206(1–2): 169–176
CrossRef Google scholar
[176]
Im H J, Saengkerdsub S, Stephan A C, Pawel M D, Holcomb D E, Dai S. Transparent solid-state lithiated neutron scintillators based on self-assembly of polystyrene-block-poly(ethylene oxide) copolymer architectures. Advanced Materials, 2004, 16(19): 1757–1761
CrossRef Google scholar
[177]
Kesanli B, Hong K, Meyer K, Im H J, Dai S. Highly efficient solid-state neutron scintillators based on hybrid sol–gel nanocomposite materials. Applied Physics Letters, 2006, 89(21): 214104
CrossRef Google scholar
[178]
deKrafft K E, Boyle W S, Burk L M, Zhou O Z, Lin W. Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography. Journal of Materials Chemistry, 2012, 22(35): 18139–18144
CrossRef Pubmed Google scholar
[179]
Doty F, Bauer C, Skulan A, Grant P, Allendorf M. Scintillating metal-organic frameworks: a new class of radiation detection materials. Advanced Materials, 2009, 21(1): 95–101
CrossRef Google scholar
[180]
Perry J J IV, Feng P L, Meek S T, Leong K, Doty F P, Allendorf M D. Connecting structure with function in metal–organic frameworks to design novel photo- and radioluminescent materials. Journal of Materials Chemistry, 2012, 22(20): 10235–10248
CrossRef Google scholar
[181]
Alexander P, Lacey A, Lyons L. Absorption and luminescence origins in anthracene crystals. Journal of Chemical Physics, 1961, 34(6): 2200–2201
CrossRef Google scholar
[182]
Dekker A, Lipsett F. Fluorescent spectra of some organic solid solutions. Canadian Journal of Physics, 1952, 30(3): 165–173
CrossRef Google scholar
[183]
Helfrich W, Lipsett F. Fluorescence and defect fluorescence of anthracene at 4.2° K. Journal of Chemical Physics, 1965, 43(12): 4368–4376
CrossRef Google scholar
[184]
Hubbell J, Seltzer S. NIST standard reference database 126, Gaithersburg, MD: National Institute of Standards and Technology 1996
[185]
Vistovskyy V, Zhyshkovych A, Chornodolskyy Y M, Myagkota O, Gloskovskii A, Gektin A, Vasil’ev A, Rodnyi P, Voloshinovskii A. Self-trapped exciton and core-valence luminescence in BaF2 nanoparticles. Journal of Applied Physics, 2013, 114(19): 194306
CrossRef Google scholar
[186]
Vistovskyy V, Zhyshkovych A, Mitina N, Zaichenko A, Gektin A, Vasil’ev A, Voloshinovskii A. Relaxation of electronic excitations in CaF2 nanoparticles. Journal of Applied Physics, 2012, 112(2): 024325
CrossRef Google scholar
[187]
Malyy T, Vistovskyy V, Khapko Z, Pushak A, Mitina N, Zaichenko A, Gektin A, Voloshinovskii A. Recombination luminescence of LaPO4-Eu and LaPO4-Pr nanoparticles. Journal of Applied Physics, 2013, 113(22): 224305
CrossRef Google scholar
[188]
Vistovskyy V, Malyy T, Pushak A, Vas’Kiv A, Shapoval A, Mitina N, Gektin A, Zaichenko A, Voloshinovskii A. Luminescence and scintillation properties of LuPO4-Ce nanoparticles. Journal of Luminescence, 2014, 145: 232–236
CrossRef Google scholar
[189]
Bizarri G, Moses W W, Singh J, Vasil’Ev A, Williams R. An analytical model of nonproportional scintillator light yield in terms of recombination rates. Journal of Applied Physics, 2009, 105(4): 044507
CrossRef Google scholar
[190]
Sudheendra L, Das G K, Li C, Stark D, Cena J, Cherry S, Kennedy I M. NaGdF4:Eu3+ nanoparticles for enhanced X-ray excited optical imaging. Chemistry of Materials, 2014, 26(5): 1881–1888
CrossRef Pubmed Google scholar
[191]
Sengupta D, Miller S, Marton Z, Chin F, Nagarkar V, Pratx G. Bright Lu2O3:Eu thin-film scintillators for high-resolution radioluminescence microscopy. Advanced Healthcare Materials, 2015, 4(14): 2064–2070
CrossRef Pubmed Google scholar
[192]
Ikesue A, Aung Y L. Synthesis and performance of advanced ceramic lasers. Journal of the American Ceramic Society, 2006, 89(6): 1936–1944
CrossRef Google scholar
[193]
McCauley J W, Patel P, Chen M, Gilde G, Strassburger E, Paliwal B, Ramesh K, Dandekar D P. AlON: a brief history of its emergence and evolution. Journal of the European Ceramic Society, 2009, 29(2): 223–236
CrossRef Google scholar
[194]
Cherepy N, Kuntz J, Seeley Z, Fisher S, Drury O, Sturm B, Hurst T, Sanner R, Roberts J, Payne S. Transparent ceramic scintillators for gamma spectroscopy and radiography. In: Proceedings of Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XII, International Society for Optics and Photonics, 2010, 78050I
[195]
Kielty M W. Cerium doped glasses: search for a new scintillator. Dissertation for the Master Degree. Clemson: Clemson University, 2016
[196]
Biswas A, Maciel G, Friend C, Prasad P. Upconversion properties of a transparent Er3+–Yb3+ co-doped LaF3–SiO2 glass-ceramics prepared by sol–gel method. Journal of Non-Crystalline Solids, 2003, 316(2–3): 393–397
CrossRef Google scholar
[197]
de Faoite D, Hanlon L, Roberts O, Ulyanov A, McBreen S, Tobin I, Stanton K T. Development of glass-ceramic scintillators for gamma-ray astronomy, Journal of Physics: Conference Series, 2015, 012002
[198]
Barta M B, Nadler J H, Kang Z, Wagner B K, Rosson R, Kahn B. Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators. Optical Materials, 2013, 36(2): 287–293
CrossRef Google scholar
[199]
Baccaro S, Cecilia A, Mihokova E, Nikl M, Nitsch K, Polato P, Zanella G, Zannoni R. Radiation damage induced by γ irradiation on Ce3+ doped phosphate and silicate scintillating glasses. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 476(3): 785–789
CrossRef Google scholar
[200]
Kang Z, Wagner B K, Nadler J H, Rosson R, Kahn B, Barta M B. Transparent glass scintillators, methods of making same and devices using same. Google Patents, 2016
[201]
Chen W, Cao J, Hu F, Wei R, Chen L, Sun X, Guo H. Highly efficient Na5Gd9F32:Tb3+ glass ceramic as nanocomposite scintillator for X-ray imaging. Optical Materials Express, 2018, 8(1): 41–49
CrossRef Google scholar
[202]
Hammig M D. Nanoscale Methods to Enhance the Detection of Ionizing Radiation. In: Nenoi M, ed. Current Topics in Ionizing Radiation Research. London: IntechOpen, 2012
[203]
Guss P, Guise R, Yuan D, Mukhopadhyay S, O’Brien R, Lowe D, Kang Z, Menkara H, Nagarkar V V. Lanthanum halide nanoparticle scintillators for nuclear radiation detection. Journal of Applied Physics, 2013, 113(6): 064303
CrossRef Google scholar
[204]
Hall R G. Nanoscintillators for radiation detection. Dissertation for the Master Degree. Arlington: The University of Texas at Arlington, 2013
[205]
Brown S, Rondinone A J, Dai S. (ORNL), Oak Ridge, TN (United States), 2007
[206]
Schlomka J P, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, Bäumer C, Herrmann C, Steadman R, Zeitler G, Livne A, Proksa R. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Physics in Medicine and Biology, 2008, 53(15): 4031–4047
CrossRef Pubmed Google scholar
[207]
Morgan N Y, Kramer-Marek G, Smith P D, Camphausen K, Capala J. Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: calculation of required physical parameters. Radiation Research, 2009, 171(2): 236–244
[208]
Chen H, Wang G D, Chuang Y J, Zhen Z, Chen X, Biddinger P, Hao Z, Liu F, Shen B, Pan Z, Xie J. Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Letters, 2015, 15(4): 2249–2256
CrossRef Pubmed Google scholar
[209]
Clement S, Deng W, Camilleri E, Wilson B C, Goldys E M. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield. Scientific Reports, 2016, 6(1): 19954
CrossRef Pubmed Google scholar
[210]
Yu X, Liu X, Wu W, Yang K, Mao R, Ahmad F, Chen X, Li W. CT/MRI-guided synergistic radiotherapy and X-ray inducible photodynamic therapy using Tb-doped Gd-W-nanoscintillators. Angewandte Chemie International Edition, 2019, 58(7): 2017–2022
CrossRef Pubmed Google scholar
[211]
Wang H, Lv B, Tang Z, Zhang M, Ge W, Liu Y, He X, Zhao K, Zheng X, He M, Bu W. Scintillator-based nanohybrids with sacrificial electron prodrug for enhanced X-ray-induced photodynamic therapy. Nano Letters, 2018, 18(9): 5768–5774
CrossRef Pubmed Google scholar
[212]
Bekah D, Cooper D, Kudinov K, Hill C, Seuntjens J, Bradforth S, Nadeau J. Synthesis and characterization of biologically stable, doped LaF3 nanoparticles co-conjugated to PEG and photosensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329: 26–34
CrossRef Google scholar
[213]
Butterworth K T, McMahon S J, Currell F J, Prise K M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 2012, 4(16): 4830–4838
CrossRef Pubmed Google scholar
[214]
Bulin A L, Truillet C, Chouikrat R, Lux F, Frochot C, Amans D, Ledoux G, Tillement O, Perriat P, Barberi-Heyob M, Dujardin C. X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins. Journal of Physical Chemistry C, 2013, 117(41): 21583–21589
CrossRef Google scholar
[215]
Moronne M M. Development of X-ray excitable luminescent probes for scanning X-ray microscopy. Ultramicroscopy, 1999, 77(1–2): 23–36
CrossRef Pubmed Google scholar
[216]
Morgan N Y, Kramer-Marek G, Smith P D, Camphausen K, Capala J. Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: calculation of required physical parameters. Radiation Research, 2009, 171(2): 236–244
CrossRef Pubmed Google scholar
[217]
Liu B, Wen L, Zhao X. The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering. Solar Energy Materials and Solar Cells, 2008, 92(1): 1–10
CrossRef Google scholar
[218]
Chen W, Zhang J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology, 2006, 6(4): 1159–1166
CrossRef Pubmed Google scholar
[219]
Chen W, Wang S, Westcott S, Zhang J. Energy-transfer nanocomposite materials and methods of making and using same. Google Patents, 2009
[220]
Pratx G, Carpenter C M, Sun C, Xing L. X-ray luminescence computed tomography via selective excitation: a feasibility study. IEEE Transactions on Medical Imaging, 2010, 29(12): 1992–1999
CrossRef Pubmed Google scholar
[221]
Pratx G, Carpenter C M, Sun C, Rao R P, Xing L. Tomographic molecular imaging of X-ray-excitable nanoparticles. Optics Letters, 2010, 35(20): 3345–3347
CrossRef Pubmed Google scholar
[222]
Li C, Di K, Bec J, Cherry S R. X-ray luminescence optical tomography imaging: experimental studies. Optics Letters, 2013, 38(13): 2339–2341
CrossRef Pubmed Google scholar
[223]
Welsher K, Liu Z, Sherlock S P, Robinson J T, Chen Z, Daranciang D, Dai H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotechnology, 2009, 4(11): 773–780
CrossRef Pubmed Google scholar
[224]
Iverson N M, Barone P W, Shandell M, Trudel L J, Sen S, Sen F, Ivanov V, Atolia E, Farias E, McNicholas T P, Reuel N, Parry N M A, Wogan G N, Strano M S. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nature Nanotechnology, 2013, 8(11): 873–880
CrossRef Pubmed Google scholar
[225]
Yi H, Ghosh D, Ham M H, Qi J, Barone P W, Strano M S, Belcher A M. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Letters, 2012, 12(3): 1176–1183
CrossRef Pubmed Google scholar
[226]
Rogach A L, Eychmüller A, Hickey S G, Kershaw S V. Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. Small, 2007, 3(4): 536–557
CrossRef Pubmed Google scholar
[227]
Naczynski D J, Sun C, Türkcan S, Jenkins C, Koh A L, Ikeda D, Pratx G, Xing L. X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Letters, 2015, 15(1): 96–102
CrossRef Pubmed Google scholar
[228]
Naczynski D J, Tan M C, Zevon M, Wall B, Kohl J, Kulesa A, Chen S, Roth C M, Riman R E, Moghe P V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nature Communications, 2013, 4(1): 2199
CrossRef Pubmed Google scholar
[229]
Yorkston J. Recent developments in digital radiography detectors. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580(2): 974–985
CrossRef Google scholar
[230]
Kim S, Park J, Kang S, Cha B, Cho S, Shin J, Son D, Nam S. Investigation of the imaging characteristics of the Gd2O3:Eu nanophosphor for high-resolution digital X-ray imaging system. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 576(1): 70–74
CrossRef Google scholar
[231]
Mupparapu M, Bhargava R N, Mullick S, Singer S R, Taskar N, Yekimov A. Development and application of a novel nanophosphor scintillator for a low-dose, high-resolution digital X-ray imaging system. International Congress Series, Elsevier, 2005, 1281: 1256–1261
[232]
Chen H, Patrick A L, Yang Z, VanDerveer D G, Anker J N. High-resolution chemical imaging through tissue with an X-ray scintillator sensor. Analytical Chemistry, 2011, 83(13): 5045–5049
CrossRef Pubmed Google scholar
[233]
Yu W W, Chang E, Drezek R, Colvin V L. Water-soluble quantum dots for biomedical applications. Biochemical and Biophysical Research Communications, 2006, 348(3): 781–786
CrossRef Pubmed Google scholar
[234]
Chen W. Nanoparticle fluorescence based technology for biological applications. Journal of Nanoscience and Nanotechnology, 2008, 8(3): 1019–1051
CrossRef Pubmed Google scholar
[235]
Chen W, Westcott S L, Wang S, Liu Y. Dose dependent X-ray luminescence in MgF2:Eu2+, Mn2+ phosphors. Journal of Applied Physics, 2008, 103(11): 113103
CrossRef Google scholar
[236]
Liu Y, Zhang Y, Wang S, Pope C, Chen W. Optical behaviors of ZnO-porphyrin conjugates and their potential applications for cancer treatment. Applied Physics Letters, 2008, 92(14): 143901
CrossRef Google scholar
[237]
Liu Y, Chen W, Wang S, Joly A G. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Applied Physics Letters, 2008, 92(4): 043901
CrossRef Google scholar
[238]
Liu Y, Chen W, Wang S, Joly A G, Westcott S, Woo B K. X-ray luminescence of LaF3:Tb3+ and LaF3:Ce3+,Tb3+ water-soluble nanoparticles. Journal of Applied Physics, 2008, 103(6): 063105
CrossRef Google scholar
[239]
Juzenas P, Chen W, Sun Y P, Coelho M A N, Generalov R, Generalova N, Christensen I L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Advanced Drug Delivery Reviews, 2008, 60(15): 1600–1614
CrossRef Pubmed Google scholar
[240]
Klassen N V, Kedrov V V, Ossipyan Y A, Shmurak S Z, Shmyt’ko I M, Krivko O A, Kudrenko E A, Kurlov V N, Kobelev N P, Kiselev A P, Bozhko S I. Nanoscintillators for microscopic diagnostics of biological and medical objects and medical therapy. IEEE Transactions on Nanobioscience, 2009, 8(1): 20–32
CrossRef Pubmed Google scholar

Acknowledgements

SKG would like to thank the United States-India Education Foundation (USIEF, India) and the Institute of International Education (IIE, USA) for his Fulbright Nehru Postdoctoral Fellowship (Award# 2268/FNPDR/2017). YM thanks the financial support provided by the IIT startup funds.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(4241 KB)

Accesses

Citations

Detail

Sections
Recommended

/