Singular PT-symmetry broken point with infinite transmittance and reflectance----a classical analytical demonstration

Yingxin JIANG

PDF(633 KB)
PDF(633 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (4) : 438-444. DOI: 10.1007/s12200-020-0969-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Singular PT-symmetry broken point with infinite transmittance and reflectance----a classical analytical demonstration

Author information +
History +

Abstract

To demonstrate the existence of singular parity-time symmetry (PT-symmetry) broken point in optics system, we designed a one-dimensional PT symmetric structure including N unit-cell with loss and gain materials in half. We performed an analytical deduction to obtain the transmittance and reflectance of the structure basing on Maxwell’s equations. We found that with the exact structure unit-cell number and the imaginary part of refraction index, the transmittance and reflectance are both close to infinite. Such strict condition is called the singular point in this study. At the singular point position, both the transmission and reflection are direction-independent. Away from the singular point, the transmittance and reflectance become finite. In light of classical wave optics, the single unit and total structure both become the resonance units. The infinite transmittance and reflectance result from the resonance matching of single unit and total structure. In light of quantum theory, the singular point corresponds to the single eigenvalue of electromagnetic scattering matrix. The infinite transmittance and reflectance mean a huge energy transformation from pumping source to light waves. Numerical calculation and software simulation both demonstrate the result.

Graphical abstract

Keywords

parity-time symmetric (PT-symmetric) structure / singular point / transmittance / reflectance

Cite this article

Download citation ▾
Yingxin JIANG. Singular PT-symmetry broken point with infinite transmittance and reflectance----a classical analytical demonstration. Front. Optoelectron., 2021, 14(4): 438‒444 https://doi.org/10.1007/s12200-020-0969-3

References

[1]
Joannopoulos J D, Villeneuve P R, Fan S. Photonic crystals: putting new twist on light. Nature, 1997, 386(6621): 143–149
CrossRef Google scholar
[2]
Knight J C, Broeng J, Birks T A, Russell P S J. Photonic band gap guidance in optical fibers. Science, 1998, 282(5393): 1476–1478
CrossRef Pubmed Google scholar
[3]
Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824–830
CrossRef Pubmed Google scholar
[4]
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
CrossRef Pubmed Google scholar
[5]
Marani R, D’Orazio A, Petruzzelli V, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Bravo-Abad J. Gain-assisted extraordinary optical transmission through periodic arrays of subwavelength apertures. New Journal of Physics, 2012, 14(1): 013020
[6]
Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E, Almeida V R, Chen Y F, Scherer A. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nature Materials, 2013, 12(2): 108–113
CrossRef Pubmed Google scholar
[7]
Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D. Observation of parity–time symmetry in optics. Nature Physics, 2010, 6(3): 192–195
CrossRef Google scholar
[8]
Mostafazadeh A. Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. Physical Review Letters, 2009, 102(22): 220402
CrossRef Pubmed Google scholar
[9]
Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N. Observation of PT-symmetry breaking in complex optical potentials. Physical Review Letters, 2009, 103(9): 093902
CrossRef Pubmed Google scholar
[10]
Longhi S. PT-symmetric laser absorber. Physical Review A, 2010, 82(3): 031801
CrossRef Google scholar
[11]
Chong Y D, Ge L, Stone A D. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Physical Review Letters, 2011, 106(9): 093902
CrossRef Pubmed Google scholar
[12]
Ge L, Chong Y D, Rotter S, Tureci H E, Stone A D. Unconventional modes in lasers with spatially varying gain and loss. Physical Review A, 2011, 84(2): 023820
CrossRef Google scholar
[13]
Nazari F, Nazari M, Moravvej-Farshi M K. A 2×2 spatial optical switch based on PT-symmetry. Optics Letters, 2011, 36(22): 4368–4370
CrossRef Pubmed Google scholar
[14]
Bender N, Factor S, Bodyfelt J D, Ramezani H, Christodoulides D N, Ellis F M, Kottos T. Observation of asymmetric transport in structures with active nonlinearities. Physical Review Letters, 2013, 110(23): 234101
CrossRef Pubmed Google scholar
[15]
Nazari F, Bender N, Ramezani H, Moravvej-Farshi M K, Christodoulides D N, Kottos T. Optical isolation via PT-symmetric nonlinear Fano resonances. Optics Express, 2014, 22(8): 9574–9584
CrossRef Pubmed Google scholar
[16]
Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S H, Nori F, Bender C M, Yang L. Parity-time-symmetric whispering-gallery microcavities. Nature Physics, 2014, 10(5): 394–398
CrossRef Google scholar
[17]
Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N. Unidirectional invisibility induced by PT-symmetric periodic structures. Physical Review Letters, 2011, 106(21): 213901
CrossRef Pubmed Google scholar
[18]
Longhi S. Invisibility in PT-symmetric complex crystals. Journal of Physics A, Mathematical and Theoretical, 2011, 44(48): 485302
CrossRef Google scholar
[19]
Zhu X F, Peng Y G, Zhao D G. Anisotropic reflection oscillation in periodic multilayer structures of parity-time symmetry. Optics Express, 2014, 22(15): 18401–18411
CrossRef Pubmed Google scholar
[20]
Ding S, Wang G P. Extraordinary reflection and transmission with direction dependent wavelength selectivity based on parity-time-symmetric multilayers. Journal of Applied Physics, 2015, 117(2): 023104
CrossRef Google scholar
[21]
Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier, Cambridge University, 1997
[22]
Ge L, Chong Y D, Stone A D. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures. Physical Review A, 2012, 85(2): 023802
CrossRef Google scholar
[23]
Schomerus H. Quantum noise and self-sustained radiation of PT-symmetric systems. Physical Review Letters, 2010, 104(23): 233601
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(633 KB)

Accesses

Citations

Detail

Sections
Recommended

/