Distributed feedback organic lasing in photonic crystals

Yulan FU, Tianrui ZHAI

PDF(3014 KB)
PDF(3014 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (1) : 18-34. DOI: 10.1007/s12200-019-0942-1
REVIEW ARTICLE
REVIEW ARTICLE

Distributed feedback organic lasing in photonic crystals

Author information +
History +

Abstract

Considerable research efforts have been devoted to the investigation of distributed feedback (DFB) organic lasing in photonic crystals in recent decades. It is still a big challenge to realize DFB lasing in complex photonic crystals. This review discusses the recent progress on the DFB organic laser based on one-, two-, and three-dimensional photonic crystals. The photophysics of gain materials and the fabrication of laser cavities are also introduced. At last, future development trends of the lasers are prospected.

Keywords

photonic crystals / microcavity lasers / distributed feedback (DFB)

Cite this article

Download citation ▾
Yulan FU, Tianrui ZHAI. Distributed feedback organic lasing in photonic crystals. Front. Optoelectron., 2020, 13(1): 18‒34 https://doi.org/10.1007/s12200-019-0942-1

References

[1]
Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059–2062
CrossRef Pubmed Google scholar
[2]
John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23): 2486–2489
CrossRef Pubmed Google scholar
[3]
Joannopoulos J D, Villeneuve P R, Fan S. Photonic crystals: putting a new twist on light. Nature, 1997, 386(6621): 143–149
CrossRef Google scholar
[4]
Sakoda K. Optical Properties of Photonic Crystals. New York: Springer, 2001
[5]
Zhai T, Liu D, Zhang X. Photonic crystals and microlasers fabricated with low refractive index material. Frontiers in Physics, 2010, 5(3): 266–276
CrossRef Google scholar
[6]
Krauss T F, Rue R, Brand S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature, 1996, 383(6602): 699–702
CrossRef Google scholar
[7]
Zoorob M E, Charlton M D, Parker G J, Baumberg J J, Netti M C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature, 2000, 404(6779): 740–743
CrossRef Pubmed Google scholar
[8]
Campbell M, Sharp D N, Harrison M T, Denning R G, Turberfield A J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000, 404(6773): 53–56
CrossRef Pubmed Google scholar
[9]
Bendickson J M, Dowling J P, Scalora M. Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures. Physical Review E, 1996, 53(4): 4107–4121
CrossRef Pubmed Google scholar
[10]
Boedecker G, Henkel C. All-frequency effective medium theory of a photonic crystal. Optics Express, 2003, 11(13): 1590–1595
CrossRef Pubmed Google scholar
[11]
Wang Z, Zhai T, Lin J, Liu D. Effect of surface truncation on mode density in photonic crystals. Journal of the Optical Society of America B, Optical Physics, 2007, 24(9): 2416–2420
CrossRef Google scholar
[12]
Dowling J, Scalora M, Bloemer M, Bowden C. The photonic band edge laser: a new approach to gain enhancement. Journal of Applied Physics, 1994, 75(4): 1896–1899
CrossRef Google scholar
[13]
Cho C O, Jeong J, Lee J, Jeon H, Kim I, Jang D H, Park Y S, Woo J C. Photonic crystal band edge laser array with a holographically generated square-lattice pattern. Applied Physics Letters, 2005, 87(16): 161102
CrossRef Google scholar
[14]
Kim H, Lee M, Jeong H, Hwang M S, Kim H R, Park S, Park Y D, Lee T, Park H G, Jeon H. Electrical modulation of a photonic crystal band-edge laser with a graphene monolayer. Nanoscale, 2018, 10(18): 8496–8502
CrossRef Pubmed Google scholar
[15]
Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189
CrossRef Google scholar
[16]
Bose R, Sridharan D, Kim H, Solomon G S, Waks E. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Physical Review Letters, 2012, 108(22): 227402
CrossRef Pubmed Google scholar
[17]
Nozaki K, Shinya A, Matsuo S, Sato T, Kuramochi E, Notomi M. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Optics Express, 2013, 21(10): 11877–11888
CrossRef Pubmed Google scholar
[18]
Liu Q, Ouyang Z, Wu C J, Liu C P, Wang J C. All-optical half adder based on cross structures in two-dimensional photonic crystals. Optics Express, 2008, 16(23): 18992–19000
CrossRef Pubmed Google scholar
[19]
McCutcheon M W, Rieger G W, Young J F, Dalacu D, Poole P J, Williams R L. All-optical conditional logic with a nonlinear photonic crystal nanocavity. Applied Physics Letters, 2009, 95(22): 221102
CrossRef Google scholar
[20]
Fu Y, Hu X, Gong Q. Silicon photonic crystal all-optical logic gates. Physics Letters A, 2013, 377(3–4): 329–333
CrossRef Google scholar
[21]
Rupasov V I V I, Singh M. Quantum gap solitons and many-polariton-atom bound states in dispersive medium and photonic band gap. Physical Review Letters, 1996, 77(2): 338–341
CrossRef Pubmed Google scholar
[22]
Xie P, Zhang Z Q. Multifrequency gap solitons in nonlinear photonic crystals. Physical Review Letters, 2003, 91(21): 213904
CrossRef Pubmed Google scholar
[23]
Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N. Conical diffraction and gap solitons in honeycomb photonic lattices. Physical Review Letters, 2007, 98(10): 103901
CrossRef Pubmed Google scholar
[24]
Wu J, Day D, Gu M. A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal. Applied Physics Letters, 2008, 92(7): 071108
CrossRef Google scholar
[25]
Kang C, Phare C T, Vlasov Y A, Assefa S, Weiss S M. Photonic crystal slab sensor with enhanced surface area. Optics Express, 2010, 18(26): 27930–27937
CrossRef Pubmed Google scholar
[26]
Sørensen K T, Ingvorsen C B, Nielsen L H, Kristensen A. Effects of water-absorption and thermal drift on a polymeric photonic crystal slab sensor. Optics Express, 2018, 26(5): 5416–5422
CrossRef Pubmed Google scholar
[27]
Painter O, Lee R K, Scherer A, Yariv A, O’Brien J D, Dapkus P D, Kim I. Two-dimensional photonic band-gap defect mode laser. Science, 1999, 284(5421): 1819–1821
CrossRef Pubmed Google scholar
[28]
Park H G, Kim S H, Kwon S H, Ju Y G, Yang J K, Baek J H, Kim S B, Lee Y H. Electrically driven single-cell photonic crystal laser. Science, 2004, 305(5689): 1444–1447
CrossRef Pubmed Google scholar
[29]
Yang X, Wong C W. Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers. Optics Express, 2007, 15(8): 4763–4780
CrossRef Pubmed Google scholar
[30]
Ryu H Y, Kwon S H, Lee Y J, Lee Y H, Kim F. Very low threshold photonic band edge lasers from free standing trlangular photonic crystal slabs. Applied Physics Letters, 2002, 80(19): 3476–3478
CrossRef Google scholar
[31]
Arango F B, Christiansen M B, Gersborg-Hansen M, Kristensen A. Optofluidic tuning of photonic crystal band edge lasers. Applied Physics Letters, 2007, 91(22): 223503
CrossRef Google scholar
[32]
Jung H, Lee M, Han C, Park Y, Cho K S, Jeon H. Efficient on-chip integration of a colloidal quantum dot photonic crystal band-edge laser with a coplanar waveguide. Optics Express, 2017, 25(26): 32919
CrossRef Google scholar
[33]
Monat C, Seassal C, Letartre X, Regreny P, Rojo-Romeo P, Viktorovitch P, Le Vassor d’Yerville M, Cassagne D, Albert J P, Jalaguier E, Pocas S, Aspar B. InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser. Applied Physics Letters, 2002, 81(27): 5102–5104
CrossRef Google scholar
[34]
Imada M, Noda S, Chutinan A, Tokuda T, Murata M, Sasaki G. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Applied Physics Letters, 1999, 75(3): 316–318
CrossRef Google scholar
[35]
Kok M, Lu W, Lee J, Tam W, Wong G, Chan C. Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions. Applied Physics Letters, 2008, 92(15): 151108
CrossRef Google scholar
[36]
Meier M, Mekis A, Dodabalapur A, Timko A, Slusher R E, Joannopoulos J D, Nalamasu O. Laser action from two-dimensional distributed feedback in photonic crystals. Applied Physics Letters, 1999, 74(1): 7–9
CrossRef Google scholar
[37]
Riechel S, Kallinger C, Lemmer U, Feldmann J, Gombert A, Wittwer V, Scherf U. A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure. Applied Physics Letters, 2000, 77(15): 2310–2312
CrossRef Google scholar
[38]
Notomi M, Suzuki H, Tamamura T. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps. Applied Physics Letters, 2001, 78(10): 1325–1327
CrossRef Google scholar
[39]
Turnbull G, Andrew P, Jory M, Barnes W L, Samuel I. Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Physical Review B, 2001, 64(12): 125122
CrossRef Google scholar
[40]
Andrew P, Turnbull G, Samuel I, Barnes W. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Applied Physics Letters, 2002, 81(6): 954–956
CrossRef Google scholar
[41]
Turnbull G, Andrew P, Barnes W L, Samuel I. Photonic mode dispersion of a two-dimensional distributed feedback polymer laser. Physical Review B, 2003, 67(16): 165107
CrossRef Google scholar
[42]
Samuel I D, Turnbull G A. Polymer lasers: recent advances. Materials Today, 2004, 7(9): 28–35
CrossRef Google scholar
[43]
Herrnsdorf J, Guilhabert B, Chen Y, Kanibolotsky A, Mackintosh A, Pethrick R, Skabara P, Gu E, Laurand N, Dawson M. Flexible blue-emitting encapsulated organic semiconductor DFB laser. Optics Express, 2010, 18(25): 25535–25545
CrossRef Pubmed Google scholar
[44]
Zhai T, Zhang X, Pang Z. Polymer laser based on active waveguide grating structures. Optics Express, 2011, 19(7): 6487–6492
CrossRef Pubmed Google scholar
[45]
Vecchi G, Raineri F, Sagnes I, Yacomotti A, Monnier P, Karle T J, Lee K H, Braive R, Le Gratiet L, Guilet S, Beaudoin G, Taneau A, Bouchoule S, Levenson A, Raj R. Continuous-wave operation of photonic band-edge laser near 1.55 μm on silicon wafer. Optics Express, 2007, 15(12): 7551–7556
CrossRef Pubmed Google scholar
[46]
van der Ziel J P, Tsang W T, Logan R A, Mikulyak R M, Augustyniak W M. Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers. Applied Physics Letters, 1981, 39(7): 525–527
CrossRef Google scholar
[47]
Dahmani B, Hollberg L, Drullinger R. Frequency stabilization of semiconductor lasers by resonant optical feedback. Optics Letters, 1987, 12(11): 876–878
CrossRef Pubmed Google scholar
[48]
San Miguel M, Feng Q, Moloney J V. Light-polarization dynamics in surface-emitting semiconductor lasers. Physical Review A, 1995, 52(2): 1728–1739
CrossRef Pubmed Google scholar
[49]
Shank C V. Physics of dye lasers. Reviews of Modern Physics, 1975, 47(3): 649–657
CrossRef Google scholar
[50]
Ledentsov N N, Ustinov V M, Egorov A Y, Zhukov A E, Maksimov M V, Tabatadze I G, Kop′ev P S. Optical properties of heterostructures with InGaAs-GaAs quantum clusters. Semiconductors, 1994, 28(8): 832–834
[51]
Kirstaedter N, Schmidt O G, Ledentsov N N, Bimberg D, Ustinov V M, Egorov A Y, Zhukov A E, Maximov M V, Kop’ev P S, Alferov Z I. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Applied Physics Letters, 1996, 69(9): 1226–1228
CrossRef Google scholar
[52]
Bimberg D, Grundmann M, Heinrichsdorff F, Ledentsov N N, Ustinov V M, Zhukov A E, Kovsh A R, Maximov M V, Shernyakov Y M, Volovik B V, Tsatsul’nikov A F, Kop’ev P S, Alferov Z I. Quantum dot lasers: breakthrough in optoelectronics. Thin Solid Films, 2000, 367(1–2): 235–249
CrossRef Google scholar
[53]
Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834
CrossRef Pubmed Google scholar
[54]
Wang K, Wang S, Xiao S, Song Q. Recent advances in perovskite micro- and nanolasers. Advanced Optical Materials, 2018, 6(18): 1800278
CrossRef Google scholar
[55]
Wei Q, Li X, Liang C, Zhang Z, Guo J, Hong G, Xing G, Huang W. Recent progress in metal halide perovskite micro- and nanolasers. Advanced Optical Materials, 2019, 7(20): 1900080
CrossRef Google scholar
[56]
Zhang W F, Zhu H, Yu S F, Yang H Y. Observation of lasing emission from carbon nanodots in organic solvents. Advanced Materials, 2012, 24(17): 2263–2267
CrossRef Pubmed Google scholar
[57]
Qu S, Liu X, Guo X, Chu M, Zhang L, Shen D. Amplified spontaneous green emission and lasing emission from carbon nanoparticles. Advanced Functional Materials, 2014, 24(18): 2689–2695
CrossRef Google scholar
[58]
Tang C W, Vanslyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913–915
CrossRef Google scholar
[59]
Schön J H, Kloc C, Dodabalapur A, Batlogg B. An organic solid state injection laser. Science, 2000, 289(5479): 599–601
CrossRef Pubmed Google scholar
[60]
Montes V A, Li G, Pohl R, Shinar J, Anzenbacher P. Effective color tuning in organic light‐emitting diodes based on aluminum Tris(5‐aryl‐8‐hydroxyquinoline) complexes. Advanced Materials, 2004, 16(22): 2001–2003
CrossRef Google scholar
[61]
Lawrence J R, Turnbull G A, Samuel I D, Richards G J, Burn P L. Optical amplification in a first-generation dendritic organic semiconductor. Optics Letters, 2004, 29(8): 869–871
CrossRef Pubmed Google scholar
[62]
Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J, Rabe T, Riedl T, Johannes H H, Kowalsky W, Wang J, Weimann T, Hinze P. Organic solid-state ultraviolet-laser based on spiro-terphenyl. Applied Physics Letters, 2005, 87(16): 161103
CrossRef Google scholar
[63]
Xia R, Lai W Y, Levermore P A, Huang W, Bradley D D C. Low-threshold distributed-feedback lasers based on Pyrene-cored starburst molecules with 1,3,6,8-attached Oligo(9,9-Dialkylfluorene) arms. Advanced Functional Materials, 2009, 19(17): 2844–2850
CrossRef Google scholar
[64]
Tessler N, Denton G, Friend R. Lasing from conjugated-polymer microcavities. Nature, 1996, 382(6593): 695–697
CrossRef Google scholar
[65]
Campoy-Quiles M, Heliotis G, Xia R, Ariu M, Pintani M, Etchegoin P, Bradley D D C. Ellipsometric characterization of the optical constants of polyfluorene gain media. Advanced Functional Materials, 2005, 15(6): 925–933
CrossRef Google scholar
[66]
Yap B K, Xia R, Campoy-Quiles M, Stavrinou P N, Bradley D D C. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nature Materials, 2008, 7(5): 376–380
CrossRef Pubmed Google scholar
[67]
Lawrence J R, Turnbull G A, Samuel I D W. Polymer laser fabricated by a simple micromolding process. Applied Physics Letters, 2003, 82(23): 4023–4025
CrossRef Google scholar
[68]
Goossens M, Ruseckas A, Turnbull G A, Samuel I D W. Subpicosecond pulses from a gain-switched polymer distributed feedback laser. Applied Physics Letters, 2004, 85(1): 31–33
CrossRef Google scholar
[69]
O’Neill M, Kelly S M. Ordered materials for organic electronics and photonics. Advanced Materials, 2011, 23(5): 566–584
CrossRef Pubmed Google scholar
[70]
Stehr J, Crewett J, Schindler F, Sperling R, von Plessen G, Lemmer U, Lupton J M, Klar T A, Feldmann J, Holleitner A W, Forster M, Scherf U. A low threshold polymer laser based on metallic nanoparticle gratings. Advanced Materials, 2003, 15(20): 1726–1729
CrossRef Google scholar
[71]
Reufer M, Riechel S, Lupton J, Feldmann J, Lemmer U, Schneider D, Benstem T, Dobbertin T, Kowalsky W, Gombert A, Forberich K, Wittwer V, Scherf U. Low-threshold polymeric distributed feedback lasers with metallic contacts. Applied Physics Letters, 2004, 84(17): 3262–3264
CrossRef Google scholar
[72]
Marcus M, Milward J D, Köhler A, Barford W. Structural information for conjugated polymers from optical modeling. Journal of Physical Chemistry A, 2018, 122(14): 3621–3625
CrossRef Pubmed Google scholar
[73]
Virgili T, Lidzey D G, Grell M, Bradley D D C, Stagira S, Zavelani-Rossi M, De Silvestri S. Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity. Applied Physics Letters, 2002, 80(22): 4088–4090
CrossRef Google scholar
[74]
Yang Y, Turnbull G A, Samuel I D W. Sensitive explosive vapor detection with polyfluorene lasers. Advanced Functional Materials, 2010, 20(13): 2093–2097
CrossRef Google scholar
[75]
Giovanella U, Betti P, Bolognesi A, Destri S, Melucci M, Pasini M, Porzio W, Botta C. Core-type polyfluorene-based copolymers for low-cost light-emitting technologies. Organic Electronics, 2010, 11(12): 2012–2018
CrossRef Google scholar
[76]
Yan M, Rothberg L J, Papadimitrakopoulos F, Galvin M E, Miller T M. Spatially indirect excitons as primary photoexcitations in conjugated polymers. Physical Review Letters, 1994, 72(7): 1104–1107
CrossRef Pubmed Google scholar
[77]
Heliotis G, Bradley D D C, Turnbull G A, Samuel I D W. Light amplification and gain in polyfluorene waveguides. Applied Physics Letters, 2002, 81(3): 415–417
CrossRef Google scholar
[78]
Chang S J, Liu X, Lu T T, Liu Y Y, Pan J Q, Jiang Y, Chu S Q, Lai W Y, Huang W. Ladder-type poly(indenofluorene-co-benzothiadiazole)s as efficient gain media for organic lasers: design, synthesis, optical gain properties, and stabilized lasing properties. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(26): 6629–6639
CrossRef Google scholar
[79]
Lahoz F, Capuj N, Oton C J, Cheylan S. Optical gain in conjugated polymer hybrid structures based on porous silicon waveguides. Chemical Physics Letters, 2008, 463(4–6): 387–390
CrossRef Google scholar
[80]
Zhai T, Wang Y, Chen L, Wu X, Li S, Zhang X. Red-green-blue laser emission from cascaded polymer membranes. Nanoscale, 2015, 7(47): 19935–19939
CrossRef Pubmed Google scholar
[81]
Sorokin P P, Lankard J R. Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine. IBM Journal of Research and Development, 1966, 10(2): 162–163
CrossRef Google scholar
[82]
Czerney P, Graneß G, Birckner E, Vollmer F, Rettig W. Molecular engineering of cyanine-type fluorescent and laser dyes. Journal of Photochemistry and Photobiology A Chemistry, 1995, 89(1): 31–36
CrossRef Google scholar
[83]
Khairutdinov R F, Serpone N. Photophysics of cyanine dyes: subnanosecond relaxation dynamics in monomers, dimers, and H- and J-aggregates in solution. Journal of Physical Chemistry B, 1997, 101(14): 2602–2610
CrossRef Google scholar
[84]
Cerdán L, Costela A, Garcíamoreno I, Bañuelos J, Lópezarbeloa I. Singular laser behavior of hemicyanine dyes: unsurpassed efficiency and finely structured spectrum in the near-IR region. Laser Physics Letters, 2012, 9(6): 426–433
CrossRef Google scholar
[85]
Tomasulo M, Sortino S, White A J P, Raymo F M. Fast and stable photochromic oxazines. Journal of Organic Chemistry, 2005, 70(20): 8180–8189
CrossRef Pubmed Google scholar
[86]
Shi X, Wang Y, Wang Z, Sun Y, Liu D, Zhang Y, Li Q, Shi J. High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires. Applied Physics Letters, 2013, 103(2): 023504
CrossRef Google scholar
[87]
Zhai T, Wang Y, Liu H, Zhang X. Large-scale fabrication of flexible metallic nanostructure pairs using interference ablation. Optics Express, 2015, 23(2): 1863–1870
CrossRef Pubmed Google scholar
[88]
Jones G II, Jackson W, Halpern A. Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes. Chemical Physics Letters, 1980, 72(2): 391–395
CrossRef Google scholar
[89]
Liu X, Cole J M, Waddell P G, Lin T C, Radia J, Zeidler A. Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. Journal of Physical Chemistry A, 2012, 116(1): 727–737
CrossRef Pubmed Google scholar
[90]
Wang Y, Shi X, Sun Y, Zheng R, Wei S, Shi J, Wang Z, Liu D. Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires. Optics Letters, 2014, 39(1): 5–8
CrossRef Pubmed Google scholar
[91]
Wong M M, Schelly Z A. Solvent-jump relaxation kinetics of the association of Rhodamine type laser dyes. Journal of Physical Chemistry, 1974, 78(19): 1891–1895
CrossRef Google scholar
[92]
Zhai T, Zhou Y, Chen S, Wang Z, Shi J, Liu D, Zhang X. Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles. Physical Review A., 2010, 82(2): 023824
CrossRef Google scholar
[93]
Zhai T, Chen J, Chen L, Wang J, Wang L, Liu D, Li S, Liu H, Zhang X. A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate. Nanoscale, 2015, 7(6): 2235–2240
CrossRef Pubmed Google scholar
[94]
Kan S C, Vassilovski D, Wu T C, Lau K Y. Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers. Applied Physics Letters, 1993, 62(19): 2307–2309
CrossRef Google scholar
[95]
Kirstaedter N, Ledentsov N N, Grundmann M, Bimberg D, Ustinov V M, Ruvimov S S, MaximovM V, Kop′ev P S, Alferov Z I, Richter U, Werner P, Gösele U, Heydenreich J. Low threshold, large T0 injection laser emission from (InGa)As quantum dots. Electronics Letters, 1994, 30(17): 1416–1417
CrossRef Google scholar
[96]
Fafard S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y, Charbonneau S. Red-emitting semiconductor quantum dot lasers. Science, 1996, 274(5291): 1350–1353
CrossRef Pubmed Google scholar
[97]
Yamashita K, Kitanobou A, Ito M, Fukuzawa E, Oe K. Solid-state organic laser using self-written active waveguide with in-line Fabry–Pérot cavity. Applied Physics Letters, 2008, 92(14): 143305
CrossRef Google scholar
[98]
Yamashita K, Yanagi H, Oe K. Array of a dye-doped polymer-based microlaser with multiwavelength emission. Optics Letters, 2011, 36(10): 1875–1877
CrossRef Pubmed Google scholar
[99]
Lafargue C, Bittner S, Lozenko S, Lautru J, Zyss J, Ulysse C, Cluzel C, Lebental M. Three-dimensional emission from organic Fabry-Perot microlasers. Applied Physics Letters, 2013, 102(25): 251120
CrossRef Google scholar
[100]
Frolov S, Shkunov M, Vardeny Z, Yoshino K. Ring microlasers from conducting polymers. Physical Review B, 1997, 56(8): 4363–4366
CrossRef Google scholar
[101]
Frolov S V, Vardeny Z V, Yoshino K. Plastic microring lasers on fibers and wires. Applied Physics Letters, 1998, 72(15): 1802–1804
CrossRef Google scholar
[102]
Kushida S, Okada D, Sasaki F, Lin Z H, Huang J S, Yamamoto Y. Lasers: low‐threshold whispering gallery mode lasing from self‐assembled microspheres of single‐sort conjugated polymers. Advanced Optical Materials, 2017, 5(10): 1700123
CrossRef Google scholar
[103]
Persano L, Camposeo A, Del Carro P, Mele E, Cingolani R, Pisignano D. Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition. Optics Express, 2006, 14(5): 1951–1956
CrossRef Pubmed Google scholar
[104]
Singer K D, Kazmierczak T, Lott J, Song H, Wu Y, Andrews J, Baer E, Hiltner A, Weder C. Melt-processed all-polymer distributed Bragg reflector laser. Optics Express, 2008, 16(14): 10358–10363
CrossRef Pubmed Google scholar
[105]
Tsutsumi N, Ishibashi T. Organic dye lasers with distributed Bragg reflector grating and distributed feedback resonator. Optics Express, 2009, 17(24): 21698–21703
CrossRef Pubmed Google scholar
[106]
Kretsch K P, Blau W J, Dumarcher V, Rocha L, Fiorini C, Nunzi J M, Pfeiffer S, Tillmann H, Hörhold H H. Distributed feedback laser action from polymeric waveguides doped with oligo phenylene vinylene model compounds. Applied Physics Letters, 2000, 76(16): 2149–2151
CrossRef Google scholar
[107]
Zhai T R, Zhang X P, Dou F. Microscopic excavation into the optically pumped polymer lasers based on distributed feedback. Chinese Physics Letters, 2012, 29(10): 104204
CrossRef Google scholar
[108]
Martins E R, Wang Y, Kanibolotsky A L, Skabara P J, Turnbull G A, Samuel I D. Low‐threshold nanoimprinted lasers using substructured gratings for control of distributed feedback. Advanced Optical Materials, 2013, 1(8): 563–566
CrossRef Google scholar
[109]
Zhai T, Wu X, Li S, Liang S, Niu L, Wang M, Feng S, Liu H, Zhang X. Polymer lasing in a periodic-random compound cavity. Polymers, 2018, 10(11): 1194
CrossRef Pubmed Google scholar
[110]
Zhang S, Tong J, Chen C, Cao F, Liang C, Song Y, Zhai T, Zhang X. Controlling the performance of polymer lasers via the cavity coupling. Polymers, 2019, 11(5): 764
CrossRef Pubmed Google scholar
[111]
Heliotis G, Xia R, Turnbull G, Andrew P, Barnes W L, Samuel I D W, Bradley D D C. Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback. Advanced Functional Materials, 2004, 14(1): 91–97
CrossRef Google scholar
[112]
Cao H, Zhao Y, Ho S, Seelig E, Wang Q, Chang R. Random laser action in semiconductor powder. Physical Review Letters, 1999, 82(11): 2278–2281
CrossRef Google scholar
[113]
Wiersma D. The physics and applications of random lasers. Nature Physics, 2008, 4(5): 359–367
CrossRef Google scholar
[114]
Zhai T, Wang Y, Chen L, Zhang X. Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate. Nanoscale, 2015, 7(29): 12312–12317
CrossRef Pubmed Google scholar
[115]
Deotare P B, Mahony T S, Bulović V. Ultracompact low-threshold organic laser. ACS Nano, 2014, 8(11): 11080–11085
CrossRef Pubmed Google scholar
[116]
Mahler L, Tredicucci A, Beltram F, Walther C, Faist J, Beere H E, Ritchie D A, Wiersma D S. Quasi-periodic distributed feedback laser. Nature Photonics, 2010, 4(3): 165–169
CrossRef Google scholar
[117]
Man W, Megens M, Steinhardt P J, Chaikin P M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature, 2005, 436(7053): 993–996
CrossRef Pubmed Google scholar
[118]
Vardeny Z V, Nahata A, Agrawal A. Optics of photonic quasicrystals. Nature Photonics, 2013, 7(3): 177–187
CrossRef Google scholar
[119]
Zhai T, Cao F, Chu S, Gong Q, Zhang X. Continuously tunable distributed feedback polymer laser. Optics Express, 2018, 26(4): 4491–4497
CrossRef Pubmed Google scholar
[120]
Barlow G, Shore K. Threshold gain and threshold current analysis of circular grating DFB organic semiconductor lasers. IEE Proceedings-Optoelectronics, 2001, 148(4): 165–170
CrossRef Google scholar
[121]
Bauer C, Giessen H, Schnabel B, Kley E B, Schmitt C, Scherf U, Mahrt R F. A surface-emitting circular grating polymer laser. Advanced Materials, 2001, 13(15): 1161–1164
CrossRef Google scholar
[122]
Stellinga D, Pietrzyk M E, Glackin J M E, Wang Y, Bansal A K, Turnbull G A, Dholakia K, Samuel I D W, Krauss T F. An organic vortex laser. ACS Nano, 2018, 12(3): 2389–2394
CrossRef Pubmed Google scholar
[123]
Zhou P, Niu L, Hayat A, Cao F, Zhai T, Zhang X. Operating characteristics of high-order distributed feedback polymer lasers. Polymers, 2019, 11(2): 258
CrossRef Pubmed Google scholar
[124]
Zhai T, Zhang X. Gain- and feedback-channel matching in lasers based on radiative-waveguide gratings. Applied Physics Letters, 2012, 101(14): 143507
CrossRef Google scholar
[125]
Kogelnik H, Shank C V. Coupled‐wave theory of distributed feedback lasers. Journal of Applied Physics, 1972, 43(5): 2327–2335
CrossRef Google scholar
[126]
Kazarinov R F, Henry C H. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE Journal of Quantum Electronics, 1985, 21(2): 144–150
CrossRef Google scholar
[127]
Scheuer J, Yariv A. Coupled-waves approach to the design and analysis of Bragg and photonic crystal annular resonators. IEEE Journal of Quantum Electronics, 2003, 39(12): 1555–1562
CrossRef Google scholar
[128]
Vannahme C, Smith C L C, Christiansen M B, Kristensen A. Emission wavelength of multilayer distributed feedback dye lasers. Applied Physics Letters, 2012, 101(15): 151123
CrossRef Google scholar
[129]
Huang W, Shen S, Pu D, Wei G, Ye Y, Peng C, Chen L. Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures. Journal of Physics D, 2015, 48(49): 495105
CrossRef Google scholar
[130]
Zhai T, Wu X, Wang M, Tong F, Li S, Ma Y, Deng J, Zhang X. Dual-wavelength polymer laser based on an active/inactive/active sandwich-like structure. Applied Physics Letters, 2016, 109(10): 101906
CrossRef Google scholar
[131]
van Beijnum F, van Veldhoven P J, Geluk E J, de Dood M J A, ’t Hooft G W, van Exter M P. Surface plasmon lasing observed in metal hole arrays. Physical Review Letters, 2013, 110(20): 206802
CrossRef Pubmed Google scholar
[132]
Kallinger C, Hilmer M, Haugeneder A, Perner M, Spirkl W, Lemmer U, Feldmann J, Scherf U, Müllen K, Gombert A, Wittwer V. A flexible conjugated polymer laser. Advanced Materials, 1998, 10(12): 920–923
CrossRef Google scholar
[133]
Wenger B, Tétreault N, Welland M, Friend R. Mechanically tunable conjugated polymer distributed feedback lasers. Applied Physics Letters, 2010, 97(19): 193303
CrossRef Google scholar
[134]
Zhai T, Chen L, Li S, Hu Y, Wang Y, Wang L, Zhang X. Free-standing membrane polymer laser on the end of an optical fiber. Applied Physics Letters, 2016, 108(4): 041904
CrossRef Google scholar
[135]
Chen C, Tong F, Cao F, Tong J, Zhai T, Zhang X. Tunable polymer lasers based on metal-dielectric hybrid cavity. Optics Express, 2018, 26(24): 32048–32054
CrossRef Pubmed Google scholar
[136]
Cao F, Niu L, Tong J, Li S, Hayat A, Wang M, Zhai T, Zhang X. Hybrid lasing in a plasmonic cavity. Optics Express, 2018, 26(10): 13383–13389
CrossRef Pubmed Google scholar
[137]
Zhai T, Tong F, Cao F, Niu L, Li S, Wang M, Zhang X. Distributed feedback lasing in a metallic cavity. Applied Physics Letters, 2017, 111(11): 111901
CrossRef Google scholar
[138]
Andrew P, Turnbull G A, Samuel I D, Barnes W L. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Applied Physics Letters, 2002, 81(6): 954–956
CrossRef Google scholar
[139]
Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology, 2013, 8(7): 506–511
CrossRef Pubmed Google scholar
[140]
Foucher C, Guilhabert B, Kanibolotsky A L, Skabara P J, Laurand N, Dawson M D. RGB and white-emitting organic lasers on flexible glass. Optics Express, 2016, 24(3): 2273–2280
CrossRef Pubmed Google scholar
[141]
Wang Y, Tsiminis G, Kanibolotsky A L, Skabara P J, Samuel I D, Turnbull G A. Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators. Optics Express, 2013, 21(12): 14362–14367
CrossRef Pubmed Google scholar
[142]
Whitworth G L, Zhang S, Stevenson J R Y, Ebenhoch B, Samuel I D W, Turnbull G A. Solvent immersion nanoimprint lithography of fluorescent conjugated polymers. Applied Physics Letters, 2015, 107(16): 163301
CrossRef Google scholar
[143]
Gaal M, Gadermaier C, Plank H, Moderegger E, Pogantsch A, Leising G, List E J W. Imprinted conjugated polymer laser. Advanced Materials, 2003, 15(14): 1165–1167
CrossRef Google scholar
[144]
Liu X, Klinkhammer S, Wang Z, Wienhold T, Vannahme C, Jakobs P J, Bacher A, Muslija A, Mappes T, Lemmer U. Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer. Optics Express, 2013, 21(23): 27697–27706
CrossRef Pubmed Google scholar
[145]
Baldo M, Deutsch M, Burrows P, Gossenberger H, Gerstenberg M, Ban V, Forrest S. Organic vapor phase deposition. Advanced Materials, 1998, 10(18): 1505–1514
CrossRef Google scholar
[146]
Klinkhammer S, Liu X, Huska K, Shen Y, Vanderheiden S, Valouch S, Vannahme C, Bräse S, Mappes T, Lemmer U. Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode. Optics Express, 2012, 20(6): 6357–6364
CrossRef Pubmed Google scholar
[147]
Ge C, Lu M, Jian X, Tan Y, Cunningham B T. Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping. Optics Express, 2010, 18(12): 12980–12991
CrossRef Pubmed Google scholar
[148]
Liu X, Klinkhammer S, Sudau K, Mechau N, Vannahme C, Kaschke J, Mappes T, Wegener M, Lemmer U. Ink-jet-printed organic semiconductor distributed feedback laser. Applied Physics Express, 2012, 5(7): 072101
CrossRef Google scholar
[149]
Parafiniuk K, Monnereau C, Sznitko L, Mettra B, Zelechowska M, Andraud C, Miniewicz A, Mysliwiec J. Distributed feedback lasing in amorphous polymers with covalently bonded fluorescent dyes: the influence of photoisomerization process. Macromolecules, 2017, 50(16): 6164–6173
CrossRef Google scholar
[150]
Karl M, Glackin J M E, Schubert M, Kronenberg N M, Turnbull G A, Samuel I D W, Gather M C. Flexible and ultra-lightweight polymer membrane lasers. Nature Communications, 2018, 9(1): 1525
CrossRef Pubmed Google scholar
[151]
Namdas E, Tong M, Ledochowitsch P, Mednick S R, Yuen J D, Moses D, Heeger A J. Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers. Advanced Materials, 2009, 21(7): 799–802
CrossRef Google scholar
[152]
Pisignano D, Persano L, Visconti P, Cingolani R, Gigli G, Barbarella G, Favaretto L. Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 2003, 83(13): 2545–2547
CrossRef Google scholar
[153]
Del Carro P, Camposeo A, Stabile R, Mele E, Persano L, Cingolani R, Pisignano D. Near-infrared imprinted distributed feedback lasers. Applied Physics Letters, 2006, 89(20): 201105
CrossRef Google scholar
[154]
Chang J, Gwinner M, Caironi M, Sakanoue T, Sirringhaus H. Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography. Advanced Functional Materials, 2010, 20(17): 2825–2832
CrossRef Google scholar
[155]
Berger V, Gauthier-Lafaye O, Costard E. Photonic band gaps and holography. Journal of Applied Physics, 1997, 82(1): 60–64
CrossRef Google scholar
[156]
Yoshioka H, Yang Y, Watanabe H, Oki Y. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser. Optics Express, 2012, 20(4): 4690–4696
CrossRef Pubmed Google scholar
[157]
Chen S, Zhou Y, Zhai T, Wang Z, Liu D. Different emission properties of a band edge laser pumped by picosecond and nanosecond pulses. Laser Physics Letters, 2012, 9(8): 570–574
CrossRef Google scholar
[158]
Stroisch M, Woggon T, Lemmer U, Bastian G, Violakis G, Pissadakis S. Organic semiconductor distributed feedback laser fabricated by direct laser interference ablation. Optics Express, 2007, 15(7): 3968–3973
CrossRef Pubmed Google scholar
[159]
Zhai T, Zhang X, Pang Z, Dou F. Direct writing of polymer lasers using interference ablation. Advanced Materials, 2011, 23(16): 1860–1864
CrossRef Pubmed Google scholar
[160]
Zhang X, Liu H, Li H, Zhai T. Direct nanopatterning into conjugated polymers using interference crosslinking. Macromolecular Chemistry and Physics, 2012, 213(12): 1285–1290
CrossRef Google scholar
[161]
Zhai T, Lin Y, Liu H, Feng S, Zhang X. Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures. Optics Express, 2013, 21(21): 24490–24496
CrossRef Pubmed Google scholar
[162]
Scott B, Wirnsberger G, McGehee M, Chmelka B, Stucky G. Dye-doped mesostructured silica as a distributed feedback laser fabricated by soft lithography. Advanced Materials, 2001, 13(16): 1231–1234
CrossRef Google scholar
[163]
Ge C, Lu M, Tan Y, Cunningham B T. Enhancement of pump efficiency of a visible wavelength organic distributed feedback laser by resonant optical pumping. Optics Express, 2011, 19(6): 5086–5092
CrossRef Pubmed Google scholar
[164]
Lawrence J, Turnbull G, Samuel I. Polymer laser fabricated by a simple micromolding process. Applied Physics Letters, 2003, 82(23): 4023–4025
CrossRef Google scholar
[165]
Salerno M, Gigli G, Zavelani-Rossi M, Perissinotto S, Lanzani G. Effects of morphology and optical contrast in organic distributed feedback lasers. Applied Physics Letters, 2007, 90(11): 111110
CrossRef Google scholar
[166]
Yamashita K, Takeuchi N, Oe K, Yanagi H. Simultaneous RGB lasing from a single-chip polymer device. Optics Letters, 2010, 35(14): 2451–2453
CrossRef Pubmed Google scholar
[167]
Kuehne A J C, Gather M C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chemical Reviews, 2016, 116(21): 12823–12864
CrossRef Pubmed Google scholar
[168]
Samuel I D, Turnbull G A. Organic semiconductor lasers. Chemical Reviews, 2007, 107(4): 1272–1295
CrossRef Pubmed Google scholar
[169]
Grivas C, Pollnau M. Organic solid-state integrated amplifiers and lasers. Laser & Photonics Reviews, 2012, 6(4): 419–462
CrossRef Google scholar
[170]
Heliotis G, Xia R, Bradley D D C, Turnbull G A, Samuel I D W, Andrew P, Barnes W L. Blue, surface-emitting, distributed feedback polyfluorene lasers. Applied Physics Letters, 2003, 83(11): 2118–2120
CrossRef Google scholar
[171]
Jung H, Han C, Kim H, Cho K S, Roh Y G, Park Y, Jeon H. Tunable colloidal quantum dot distributed feedback lasers integrated on a continuously chirped surface grating. Nanoscale, 2018, 10(48): 22745–22749
CrossRef Pubmed Google scholar
[172]
Zhai T, Wu X, Tong F, Li S, Wang M, Zhang X. Multi-wavelength lasing in a beat structure. Applied Physics Letters, 2016, 109(26): 261906
CrossRef Google scholar
[173]
Karnutsch C, Pflumm C, Heliotis G, deMello J C, Bradley D D C, Wang J, Weimann T, Haug V, Gärtner C, Lemmer U. Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Applied Physics Letters, 2007, 90(13): 131104
CrossRef Google scholar
[174]
Karnutsch C, Gýrtner C, Haug V, Lemmer U, Farrell T, Nehls B S, Scherf U, Wang J, Weimann T, Heliotis G, Pflumm C, deMello J C, Bradley D D C. Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback. Applied Physics Letters, 2006, 89(20): 201108
CrossRef Google scholar
[175]
Zhai T, Tong F, Wang Y, Wu X, Li S, Wang M, Zhang X. Polymer lasers assembled by suspending membranes on a distributed feedback grating. Optics Express, 2016, 24(19): 22028–22033
CrossRef Pubmed Google scholar
[176]
Notomi M, Suzuki H, Tamamura T, Edagawa K. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice. Physical Review Letters, 2004, 92(12): 123906
CrossRef Pubmed Google scholar
[177]
Turnbull G, Andrew P, Barnes W, Samuel I. Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Applied Physics Letters, 2003, 82(3): 313–315
CrossRef Google scholar
[178]
Harwell J R, Whitworth G L, Turnbull G A, Samuel I D W. Green perovskite distributed feedback lasers. Scientific Reports, 2017, 7(1): 11727
CrossRef Pubmed Google scholar
[179]
Prins F, Kim D K, Cui J, De Leo E, Spiegel L L, McPeak K M, Norris D J. Direct patterning of colloidal quantum-dot thin films for enhanced and spectrally selective out-coupling of emission. Nano Letters, 2017, 17(3): 1319–1325
CrossRef Pubmed Google scholar
[180]
Cao W, Muñoz A, Palffy-Muhoray P, Taheri B. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nature Materials, 2002, 1(2): 111–113
CrossRef Pubmed Google scholar
[181]
Yoshino K, Tatsuhara S, Kawagishi Y, Ozaki M, Zakhidov A A, Vardeny Z V. Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals. Applied Physics Letters, 1999, 74(18): 2590–2592
CrossRef Google scholar
[182]
Shkunov M, Vardeny Z, DeLong M, Polson R, Zakhidov A, Baughman R. Tunable, gap-state lasing in switchable directions for opal photonic crystals. Advanced Functional Materials, 2002, 12(1): 21–26
CrossRef Google scholar
[183]
Kok M H, Lu W, Tam W Y, Wong G K. Lasing from dye-doped icosahedral quasicrystals in dichromate gelatin emulsions. Optics Express, 2009, 17(9): 7275–7284
CrossRef Pubmed Google scholar
[184]
Hirayama H, Hamano T, Aoyagi Y. Novel surface emitting laser diode using photonic band-gap crystal cavity. Applied Physics Letters, 1996, 69(6): 791–793
CrossRef Google scholar
[185]
Yang Y, Turnbull G A, Samuel I D W. Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode. Applied Physics Letters, 2008, 92(16): 163306
CrossRef Google scholar
[186]
Riedl T, Rabe T, Johannes H H, Kowalsky W, Wang J, Weimann T, Hinze P, Nehls B, Farrell T, Scherf U. Tunable organic thin-film laser pumped by an inorganic violet diode laser. Applied Physics Letters, 2006, 88(24): 241116
CrossRef Google scholar
[187]
Heydari E, Buller J, Wischerhoff E, Laschewsky A, Döring S, Stumpe J. Label-free biosensor based on an all‐polymer DFB laser. Advanced Optical Materials, 2014, 2(2): 137–141
CrossRef Google scholar
[188]
Haughey A M, Guilhabert B, Kanibolotsky A L, Skabara P J, Dawson M D, Burley G A, Laurand N. An oligofluorene truxene based distributed feedback laser for biosensing applications. Biosensors & Bioelectronics, 2014, 54: 679–686
CrossRef Pubmed Google scholar
[189]
Cao F, Zhang S, Tong J, Chen C, Niu L, Zhai T, Zhang X. Effects of cavity structure on tuning properties of polymer lasers in a liquid environment. Polymers, 2019, 11(2): 329
CrossRef Pubmed Google scholar
[190]
Schneider D, Rabe T, Riedl T, Dobbertin T, Kröger M, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P, Gerhard A, Stössel P, Vestweber H. An ultraviolet organic thin-film solid-state laser for biomarker applications. Advanced Materials, 2005, 17(1): 31–34
[191]
Retolaza A, Martinez-Perdiguero J, Merino S, Morales-Vidal M, Boj P G, Quintana J A, Villalvilla J M, Díaz-García M A. Organic distributed feedback laser for label-free biosensing of ErbB2 protein biomarker. Sensors and Actuators B, Chemical, 2016, 223: 261–265
CrossRef Google scholar
[192]
Oki Y, Miyamoto S, Maeda M, Vasa N J. Multiwavelength distributed-feedback dye laser array and its application to spectroscopy. Optics Letters, 2002, 27(14): 1220–1222
CrossRef Pubmed Google scholar
[193]
Voss T, Scheel D, Schade W. A microchip-laser-pumped DFB-polymer-dye laser. Applied Physics B, Lasers and Optics, 2001, 73(2): 105–109
CrossRef Google scholar
[194]
Christiansen M B, Schøler M, Kristensen A. Integration of active and passive polymer optics. Optics Express, 2007, 15(7): 3931–3939
CrossRef Pubmed Google scholar
[195]
Vannahme C, Klinkhammer S, Lemmer U, Mappes T. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Optics Express, 2011, 19(9): 8179–8186
CrossRef Pubmed Google scholar
[196]
Toussaere E, Bouadma N, Zyss J. Monolithic integrated four DFB lasers array with a polymer-based combiner for WDM applications. Optical Materials, 1998, 9(1–4): 255–258
CrossRef Google scholar
[197]
Ma H, Jen Y, Dalton L R. Polymer-based optical waveguides: materials, processing, and devices. Advanced Materials, 2002, 14(19): 1339–1365
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61822501, 11734001, and 11704017) and the Beijing Natural Science Foundation (No. Z180015).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3014 KB)

Accesses

Citations

Detail

Sections
Recommended

/