Exciton polaritons based on planar dielectric Si asymmetric nanogratings coupled with J-aggregated dyes film
Zhen CHAI, Xiaoyong HU, Qihuang GONG
Exciton polaritons based on planar dielectric Si asymmetric nanogratings coupled with J-aggregated dyes film
Optical cavity polaritons, originated from strong coupling between the excitons in materials and photons in the confined cavities field, have recently emerged as their applications in the high-speed low-power polaritons devices, low-threshold lasing and so on. However, the traditional exciton polaritons based on metal plasmonic structures or Fabry-Perot cavities suffer from the disadvantages of large intrinsic losses or hard to integrate and nanofabricate. This greatly limits the applications of exciton poalritons. Thus, here we implement a compact low-loss dielectric photonic – organic nanostructure by placing a 2-nm-thick PVA doped with TDBC film on top of a planar Si asymmetric nanogratings to reveal the exciton polaritons modes. We find a distinct anti-crossing dispersion behavior appears with a 117.16 meV Rabi splitting when varying the period of Si nanogratings. Polaritons dispersion and mode anti-crossing behaviors are also observed when considering the independence of the height of Si, width of Si nanowire B, and distance between the two Si nanowires in one period. This work offers an opportunity to realize low-loss novel polaritons applications.
exciton polaritons / dielectric Si asymmetric nanogratings / TDBC J-aggregated dyes film
[1] |
Liu X, Menon V M. Control of light-matter interaction in 2D atomic crystals using microcavities. IEEE Journal of Quantum Electronics, 2015, 51(10): 1–8
CrossRef
Google scholar
|
[2] |
Törmä P, Barnes W L. Strong coupling between surface plasmon polaritons and emitters: a review. Reports on progress in physics. Physical Society (Great Britain), 2015, 78(1): 013901
CrossRef
Pubmed
Google scholar
|
[3] |
Ren J, Gu Y, Zhao D, Zhang F, Zhang T, Gong Q. Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection. Physical Review Letters, 2017, 118(7): 073604
CrossRef
Pubmed
Google scholar
|
[4] |
Wang S, Li S, Chervy T, Shalabney A, Azzini S, Orgiu E, Hutchison J A, Genet C, Samorì P, Ebbesen T W. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Letters, 2016, 16(7): 4368–4374
CrossRef
Pubmed
Google scholar
|
[5] |
Lin Q Y, Li Z, Brown K A, O’Brien M N, Ross M B, Zhou Y, Butun S, Chen P C, Schatz G C, Dravid V P, Aydin K, Mirkin C A. Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Letters, 2015, 15(7): 4699–4703
CrossRef
Pubmed
Google scholar
|
[6] |
Guo X, Zou C L, Jung H, Tang H X. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Physical Review Letters, 2016, 117(12): 123902
CrossRef
Pubmed
Google scholar
|
[7] |
van Vugt L K, Rühle S, Ravindran P, Gerritsen H C, Kuipers L, Vanmaekelbergh D. Exciton polaritons confined in a ZnO nanowire cavity. Physical Review Letters, 2006, 97(14): 147401
CrossRef
Pubmed
Google scholar
|
[8] |
Sun Y, Yoon Y, Steger M, Liu G, Pfeiffer L N, West K, Snoke D W, Nelson K A. Direct measurement of polariton–polariton interaction strength. Nature Physics, 2017, 13(9): 870–875
CrossRef
Google scholar
|
[9] |
Baranov D G, Wersäll M, Cuadra J, Antosiewicz T J, Shegai T. Novel nanostructures and materials for strong light–matter interactions. ACS Photonics, 2018, 5(1): 24–42
CrossRef
Google scholar
|
[10] |
Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nature Photonics, 2013, 7(2): 128–132
CrossRef
Google scholar
|
[11] |
Sanvitto D, Kéna-Cohen S. The road towards polaritonic devices. Nature Materials, 2016, 15(10): 1061–1073
CrossRef
Pubmed
Google scholar
|
[12] |
Byrnes T, Kim N Y, Yamamoto Y. Exciton–polariton condensates. Nature Physics, 2014, 10(11): 803–813
CrossRef
Google scholar
|
[13] |
Schneider C, Rahimi-Iman A, Kim N Y, Fischer J, Savenko I G, Amthor M, Lermer M, Wolf A, Worschech L, Kulakovskii V D, Shelykh I A, Kamp M, Reitzenstein S, Forchel A, Yamamoto Y, Höfling S. An electrically pumped polariton laser. Nature, 2013, 497(7449): 348–352
CrossRef
Pubmed
Google scholar
|
[14] |
Paschos G G, Somaschi N, Tsintzos S I, Coles D, Bricks J L, Hatzopoulos Z, Lidzey D G, Lagoudakis P G, Savvidis P G. Hybrid organic-inorganic polariton laser. Scientific Reports, 2017, 7(1): 11377
CrossRef
Pubmed
Google scholar
|
[15] |
Amo A, Liew T C H, Adrados C, Houdre R, Giacobino E, Kavokin A V, Bramati A. Exciton-polariton spin switches. Nature Photonics, 2010, 4(6): 361–366
CrossRef
Google scholar
|
[16] |
De Giorgi M, Ballarini D, Cancellieri E, Marchetti F M, Szymanska M H, Tejedor C, Cingolani R, Giacobino E, Bramati A, Gigli G, Sanvitto D. Control and ultrafast dynamics of a two-fluid polariton switch. Physical Review Letters, 2012, 109(26): 266407
CrossRef
Pubmed
Google scholar
|
[17] |
Fraser M D. Coherent exciton-polariton devices. Semiconductor Science and Technology, 2017, 32(9): 093003
CrossRef
Google scholar
|
[18] |
Solnyshkov D D, Bleu O, Malpuech G. All optical controlled-NOT gate based on an exciton–polariton circuit. Superlattices and Microstructures, 2015, 83: 466–475
CrossRef
Google scholar
|
[19] |
Bose R, Sridharan D, Kim H, Solomon G S, Waks E. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Physical Review Letters, 2012, 108(22): 227402
CrossRef
Pubmed
Google scholar
|
[20] |
Demirchyan S S, Chestnov I Y, Alodjants A P, Glazov M M, Kavokin A V. Qubits based on polariton Rabi oscillators. Physical Review Letters, 2014, 112(19): 196403
CrossRef
Pubmed
Google scholar
|
[21] |
Solnyshkov D D, Johne R, Shelykh I A, Malpuech G. Chaotic Josephson oscillations of exciton-polaritons and their applications. Physical Review B, 2009, 80(23): 235303
CrossRef
Google scholar
|
[22] |
Gao T, Eldridge P S, Liew T C H, Tsintzos S I, Stavrinidis G, Deligeorgis G, Hatzopoulos Z, Savvidis P G. Polariton condensate transistor switch. Physical Review B, 2012, 85(23): 235102
CrossRef
Google scholar
|
[23] |
Antón C, Liew T C H, Sarkar D, Martín M D, Hatzopoulos Z, Eldridge P S, Savvidis P G, Viña L. Operation speed of polariton condensate switches gated by excitons. Physical Review B, 2014, 89(23): 235312
CrossRef
Google scholar
|
[24] |
Gonçalves P A D, Bertelsen L P, Xiao S S, Mortensen N A. Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces. Physical Review B, 2018, 97(4): 041402 (R)
CrossRef
Google scholar
|
[25] |
Su R, Diederichs C, Wang J, Liew T C H, Zhao J, Liu S, Xu W, Chen Z, Xiong Q. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Letters, 2017, 17(6): 3982–3988
CrossRef
Pubmed
Google scholar
|
[26] |
Zhang L, Gogna R, Burg W, Tutuc E, Deng H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nature Communications, 2018, 9(1): 713
CrossRef
Pubmed
Google scholar
|
[27] |
Wang H, Toma A, Wang H Y, Bozzola A, Miele E, Haddadpour A, Veronis G, De Angelis F, Wang L, Chen Q D, Xu H L, Sun H B, Zaccaria R P. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays. Nanoscale, 2016, 8(27): 13445–13453
CrossRef
Pubmed
Google scholar
|
[28] |
Fofang N T, Grady N K, Fan Z, Govorov A O, Halas N J. Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. Nano Letters, 2011, 11(4): 1556–1560
CrossRef
Pubmed
Google scholar
|
[29] |
Gentile M J, Núñez-Sánchez S, Barnes W L. Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures. Nano Letters, 2014, 14(5): 2339–2344
CrossRef
Pubmed
Google scholar
|
[30] |
Zheng D, Zhang S, Deng Q, Kang M, Nordlander P, Xu H. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Letters, 2017, 17(6): 3809–3814
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |