Exciton polaritons based on planar dielectric Si asymmetric nanogratings coupled with J-aggregated dyes film

Zhen CHAI, Xiaoyong HU, Qihuang GONG

PDF(1174 KB)
PDF(1174 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (1) : 4-11. DOI: 10.1007/s12200-019-0940-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Exciton polaritons based on planar dielectric Si asymmetric nanogratings coupled with J-aggregated dyes film

Author information +
History +

Abstract

Optical cavity polaritons, originated from strong coupling between the excitons in materials and photons in the confined cavities field, have recently emerged as their applications in the high-speed low-power polaritons devices, low-threshold lasing and so on. However, the traditional exciton polaritons based on metal plasmonic structures or Fabry-Perot cavities suffer from the disadvantages of large intrinsic losses or hard to integrate and nanofabricate. This greatly limits the applications of exciton poalritons. Thus, here we implement a compact low-loss dielectric photonic – organic nanostructure by placing a 2-nm-thick PVA doped with TDBC film on top of a planar Si asymmetric nanogratings to reveal the exciton polaritons modes. We find a distinct anti-crossing dispersion behavior appears with a 117.16 meV Rabi splitting when varying the period of Si nanogratings. Polaritons dispersion and mode anti-crossing behaviors are also observed when considering the independence of the height of Si, width of Si nanowire B, and distance between the two Si nanowires in one period. This work offers an opportunity to realize low-loss novel polaritons applications.

Keywords

exciton polaritons / dielectric Si asymmetric nanogratings / TDBC J-aggregated dyes film

Cite this article

Download citation ▾
Zhen CHAI, Xiaoyong HU, Qihuang GONG. Exciton polaritons based on planar dielectric Si asymmetric nanogratings coupled with J-aggregated dyes film. Front. Optoelectron., 2020, 13(1): 4‒11 https://doi.org/10.1007/s12200-019-0940-3

References

[1]
Liu X, Menon V M. Control of light-matter interaction in 2D atomic crystals using microcavities. IEEE Journal of Quantum Electronics, 2015, 51(10): 1–8
CrossRef Google scholar
[2]
Törmä P, Barnes W L. Strong coupling between surface plasmon polaritons and emitters: a review. Reports on progress in physics. Physical Society (Great Britain), 2015, 78(1): 013901
CrossRef Pubmed Google scholar
[3]
Ren J, Gu Y, Zhao D, Zhang F, Zhang T, Gong Q. Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection. Physical Review Letters, 2017, 118(7): 073604
CrossRef Pubmed Google scholar
[4]
Wang S, Li S, Chervy T, Shalabney A, Azzini S, Orgiu E, Hutchison J A, Genet C, Samorì P, Ebbesen T W. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Letters, 2016, 16(7): 4368–4374
CrossRef Pubmed Google scholar
[5]
Lin Q Y, Li Z, Brown K A, O’Brien M N, Ross M B, Zhou Y, Butun S, Chen P C, Schatz G C, Dravid V P, Aydin K, Mirkin C A. Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Letters, 2015, 15(7): 4699–4703
CrossRef Pubmed Google scholar
[6]
Guo X, Zou C L, Jung H, Tang H X. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Physical Review Letters, 2016, 117(12): 123902
CrossRef Pubmed Google scholar
[7]
van Vugt L K, Rühle S, Ravindran P, Gerritsen H C, Kuipers L, Vanmaekelbergh D. Exciton polaritons confined in a ZnO nanowire cavity. Physical Review Letters, 2006, 97(14): 147401
CrossRef Pubmed Google scholar
[8]
Sun Y, Yoon Y, Steger M, Liu G, Pfeiffer L N, West K, Snoke D W, Nelson K A. Direct measurement of polariton–polariton interaction strength. Nature Physics, 2017, 13(9): 870–875
CrossRef Google scholar
[9]
Baranov D G, Wersäll M, Cuadra J, Antosiewicz T J, Shegai T. Novel nanostructures and materials for strong light–matter interactions. ACS Photonics, 2018, 5(1): 24–42
CrossRef Google scholar
[10]
Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nature Photonics, 2013, 7(2): 128–132
CrossRef Google scholar
[11]
Sanvitto D, Kéna-Cohen S. The road towards polaritonic devices. Nature Materials, 2016, 15(10): 1061–1073
CrossRef Pubmed Google scholar
[12]
Byrnes T, Kim N Y, Yamamoto Y. Exciton–polariton condensates. Nature Physics, 2014, 10(11): 803–813
CrossRef Google scholar
[13]
Schneider C, Rahimi-Iman A, Kim N Y, Fischer J, Savenko I G, Amthor M, Lermer M, Wolf A, Worschech L, Kulakovskii V D, Shelykh I A, Kamp M, Reitzenstein S, Forchel A, Yamamoto Y, Höfling S. An electrically pumped polariton laser. Nature, 2013, 497(7449): 348–352
CrossRef Pubmed Google scholar
[14]
Paschos G G, Somaschi N, Tsintzos S I, Coles D, Bricks J L, Hatzopoulos Z, Lidzey D G, Lagoudakis P G, Savvidis P G. Hybrid organic-inorganic polariton laser. Scientific Reports, 2017, 7(1): 11377
CrossRef Pubmed Google scholar
[15]
Amo A, Liew T C H, Adrados C, Houdre R, Giacobino E, Kavokin A V, Bramati A. Exciton-polariton spin switches. Nature Photonics, 2010, 4(6): 361–366
CrossRef Google scholar
[16]
De Giorgi M, Ballarini D, Cancellieri E, Marchetti F M, Szymanska M H, Tejedor C, Cingolani R, Giacobino E, Bramati A, Gigli G, Sanvitto D. Control and ultrafast dynamics of a two-fluid polariton switch. Physical Review Letters, 2012, 109(26): 266407
CrossRef Pubmed Google scholar
[17]
Fraser M D. Coherent exciton-polariton devices. Semiconductor Science and Technology, 2017, 32(9): 093003
CrossRef Google scholar
[18]
Solnyshkov D D, Bleu O, Malpuech G. All optical controlled-NOT gate based on an exciton–polariton circuit. Superlattices and Microstructures, 2015, 83: 466–475
CrossRef Google scholar
[19]
Bose R, Sridharan D, Kim H, Solomon G S, Waks E. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Physical Review Letters, 2012, 108(22): 227402
CrossRef Pubmed Google scholar
[20]
Demirchyan S S, Chestnov I Y, Alodjants A P, Glazov M M, Kavokin A V. Qubits based on polariton Rabi oscillators. Physical Review Letters, 2014, 112(19): 196403
CrossRef Pubmed Google scholar
[21]
Solnyshkov D D, Johne R, Shelykh I A, Malpuech G. Chaotic Josephson oscillations of exciton-polaritons and their applications. Physical Review B, 2009, 80(23): 235303
CrossRef Google scholar
[22]
Gao T, Eldridge P S, Liew T C H, Tsintzos S I, Stavrinidis G, Deligeorgis G, Hatzopoulos Z, Savvidis P G. Polariton condensate transistor switch. Physical Review B, 2012, 85(23): 235102
CrossRef Google scholar
[23]
Antón C, Liew T C H, Sarkar D, Martín M D, Hatzopoulos Z, Eldridge P S, Savvidis P G, Viña L. Operation speed of polariton condensate switches gated by excitons. Physical Review B, 2014, 89(23): 235312
CrossRef Google scholar
[24]
Gonçalves P A D, Bertelsen L P, Xiao S S, Mortensen N A. Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces. Physical Review B, 2018, 97(4): 041402 (R)
CrossRef Google scholar
[25]
Su R, Diederichs C, Wang J, Liew T C H, Zhao J, Liu S, Xu W, Chen Z, Xiong Q. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Letters, 2017, 17(6): 3982–3988
CrossRef Pubmed Google scholar
[26]
Zhang L, Gogna R, Burg W, Tutuc E, Deng H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nature Communications, 2018, 9(1): 713
CrossRef Pubmed Google scholar
[27]
Wang H, Toma A, Wang H Y, Bozzola A, Miele E, Haddadpour A, Veronis G, De Angelis F, Wang L, Chen Q D, Xu H L, Sun H B, Zaccaria R P. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays. Nanoscale, 2016, 8(27): 13445–13453
CrossRef Pubmed Google scholar
[28]
Fofang N T, Grady N K, Fan Z, Govorov A O, Halas N J. Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. Nano Letters, 2011, 11(4): 1556–1560
CrossRef Pubmed Google scholar
[29]
Gentile M J, Núñez-Sánchez S, Barnes W L. Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures. Nano Letters, 2014, 14(5): 2339–2344
CrossRef Pubmed Google scholar
[30]
Zheng D, Zhang S, Deng Q, Kang M, Nordlander P, Xu H. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Letters, 2017, 17(6): 3809–3814
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200403), the National Natural Science Foundation of China (Grant Nos. 61775003, 11734001, 11527901, and 11804008), the National Postdoctoral Program for Innovative Talents (No. BX201700011), and the China Postdoctoral Science Foundation (No. 2018M630019), and Beijing Municipal Science & Technology Commission (No. Z191100007219001).

Competing financial interests

The authors declare that they have no competing financial interests.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1174 KB)

Accesses

Citations

Detail

Sections
Recommended

/