Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses

Yue WANG, Jiaxin ZHAO, Qifeng ZHU, Jianping SHEN, Zhongyue WANG, Haitao GUO, Chunxiao LIU

Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (4) : 392-396.

PDF(957 KB)
PDF(957 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (4) : 392-396. DOI: 10.1007/s12200-019-0869-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses

Author information +
History +

Abstract

Ion implantation has played a unique role in the fabrication of optical waveguide devices. Tb3+-doped aluminum borosilicate (TDAB) glass has been considered as an important magneto-optical material. In this work, near-infrared waveguides have been manufactured by the (5.5+ 6.0) MeV C3+ ion implantation with doses of (4.0+ 8.0) × 1013 ions·cm2 in the TDAB glass. The modes propagated in the TDAB glass waveguide were recorded by a prism-coupling system. The finite-difference beam propagation method (FD-BPM) was carried out to simulate the guiding characteristics of the TDAB glass waveguide. The TDAB glass waveguide allows the light propagation with a single-mode at 1.539 mm and can serve as a potential candidate for future waveguide isolators.

Keywords

Tb3+-doped aluminum borosilicate (TDAB) glass / optical waveguide / ion implantation

Cite this article

Download citation ▾
Yue WANG, Jiaxin ZHAO, Qifeng ZHU, Jianping SHEN, Zhongyue WANG, Haitao GUO, Chunxiao LIU. Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses. Front. Optoelectron., 2019, 12(4): 392‒396 https://doi.org/10.1007/s12200-019-0869-6

References

[1]
Tan Y, Ma L N, Akhmadaliev S, Zhou S Q, Chen F. Ion irradiated Er:YAG ceramic cladding waveguide amplifier in C and L bands. Optical Materials Express, 2016, 6(3): 711–716
CrossRef Google scholar
[2]
Ríos C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright C D, Bhaskaran H, Pernice W H P. Integrated all-photonic non-volatile multi-level memory. Nature Photonics, 2015, 9(11): 725–732
CrossRef Google scholar
[3]
Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725): 101–104
CrossRef Pubmed Google scholar
[4]
Hu H, Ricken R, Sohler W. Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium. Applied Physics B, Lasers and Optics, 2010, 98(4): 677–679
CrossRef Google scholar
[5]
Yang X F, Zhang Z B, Wong W H, Yu D Y, Pun E Y B, Zhang D L. Refractive index change in Ti-diffused near-stoichiometric LiTaO3 waveguide and its relation to Ti-concentration. Materials Chemistry and Physics, 2018, 203: 340–345
CrossRef Google scholar
[6]
Ma L N, Tan Y, Ghorbani-Asl M, Boettger R, Kretschmer S, Zhou S, Huang Z, Krasheninnikov A V, Chen F. Tailoring the optical properties of atomically-thin WS2 via ion irradiation. Nanoscale, 2017, 9: 11027–11034
[7]
Meriche F, Touam T, Chelouche A, Dehimi M, Solard J, Fischer A, Boudrioua A, Peng L H. Post-annealing effects on the physical and optical waveguiding properties of RF sputtered ZnO thin films. Electronic Materials Letters, 2015, 11(5): 862–870
CrossRef Google scholar
[8]
Wang Y N, Luo Y, Sun C Z, Xiong B, Wang J, Hao Z B, Han Y J, Wang L, Li H T. Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide. Frontiers of Optoelectronics, 2016, 9(2): 323–329
CrossRef Google scholar
[9]
Chen F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser & Photonics Reviews, 2012, 6(5): 622–640
CrossRef Google scholar
[10]
Jaque D, Chen F. High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides. Applied Physics Letters, 2009, 94(1): 011109
CrossRef Google scholar
[11]
Zhao J H, Zhang L, Wang X L. Waveguide and Raman spectroscopic visualization in C-implanted Ca0.20Ba0.80Nb2O6 crystal. Optical Materials Express, 2014, 4(4): 864–869
CrossRef Google scholar
[12]
Wang L, Haunhorst C E, Volk M F, Chen F, Kip D. Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals. Optics Express, 2015, 23(23): 30188–30194
CrossRef Pubmed Google scholar
[13]
Bányász I, Zolnai Z, Fried M, Berneschi S, Pelli S, Nunzi-Conti G. Leaky mode suppression in planar optical waveguides written in Er:TeO2–WO3 glass and CaF2 crystal via double energy implantation with MeV N+ ions. Nuclear Instruments and Methods in Physical Research Section B, 2014, 326: 81–85
CrossRef Google scholar
[14]
Vázquez G V, Valiente R, Gómez-Salces S, Flores-Romero E, Rickards J, Trejo-Luna R. Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission. Optics & Laser Technology, 2016, 79: 132–136
CrossRef Google scholar
[15]
Bai M Y, Zhao Y L, Jiao B B, Zhu L J, Zhang G D, Wang L. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments. International Journal of Modern Physics B, 2018, 32(14): 1850170
CrossRef Google scholar
[16]
Shen X L, Zhu Q F, Zheng R L, Lv P, Guo H T, Liu C X. Near-infrared optical properties of Yb3+-doped silicate glass waveguides prepared by double-energy proton implantation. Results in Physics, 2018, 8: 352–356
CrossRef Google scholar
[17]
Li W N, Zou K S, Lu M, Peng B, Zhao W. Faraday glasses with a large size and high performance. International Journal of Applied Ceramic Technology, 2010, 7(3): 369–374
CrossRef Google scholar
[18]
Stadler B J H, Mizumoto T. Integrated magneto-optical materials and isolators: a review. IEEE Photonics Journal, 2014, 6(1): 1–15
CrossRef Google scholar
[19]
Srinivasan K, Stadler B J H. Magneto-optical materials and designs for integrated TE- and TM-mode planar waveguide isolators: a review. Optical Materials Express, 2018, 8(11): 3307–3318
CrossRef Google scholar
[20]
Liu C X, Fu L L, Zhang L L, Guo H T, Li W N, Lin S B, Wei W. Carbon-implanted monomode waveguides in magneto-optical glasses for waveguide isolators. Applied Physics A, Materials Science & Processing, 2016, 122(2): 94
CrossRef Google scholar
[21]
Bradley J D B, Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers. Laser & Photonics Reviews, 2011, 5(3): 368–403
CrossRef Google scholar
[22]
Ziegler J F. SRIM-The Stopping and Range of Ions in Matter
[23]
Cui X J, Wang L L, Zhang H K, Chen T. KTiOPO4 double barrier optical waveguides produced by Rb+-K+ ion exchange and subsequent He+-ion irradiation. Optical Engineering (Redondo Beach, Calif.), 2016, 55(3): 036107
CrossRef Google scholar
[24]
Wang Y, Shen X L, Zheng R L, Lv P, Liu C X, Guo H T. Optical planar waveguides fabricated by using carbon ion implantation in terbium gallium garnet. Journal of the Korean Physical Society, 2018, 72(7): 765–769
CrossRef Google scholar
[25]
Rsoft Design Group. Computer software BeamPROP version 8.0
[26]
Tan Y, de Aldana J R V, Chen F. Femtosecond laser-written lithium niobate waveguide laser operating at 1085 nm. Optical Engineering (Redondo Beach, Calif.), 2014, 53(10): 107109
CrossRef Google scholar
[27]
Liu C X, Fu L L, Cheng L L, Zhu X F, Lin S B, Zheng R L, Zhou Z G, Guo H T, Li W N, Wei W. Optimization effect of annealing treatment on oxygen-implanted Nd:CNGG waveguides. Modern Physics Letters B, 2016, 30(20): 1650261
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11405041, 51502144 and 61475189).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(957 KB)

Accesses

Citations

Detail

Sections
Recommended

/