Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review

Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG

PDF(3810 KB)
PDF(3810 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (2) : 117-147. DOI: 10.1007/s12200-018-0860-7
REVIEW ARTICLE
REVIEW ARTICLE

Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review

Author information +
History +

Abstract

With the increasing demands for remote spectroscopy in many fields ranging from homeland security to environmental monitoring, terahertz (THz) spectroscopy has drawn a significant amount of attention because of its capability to acquire chemical spectral signatures non-invasively. However, advanced THz remote sensing techniques are obstructed by quite a few factors, such as THz waves being strongly absorbed by water vapor in the ambient air, difficulty to generate intense broadband coherent THz source remotely, and hard to transmit THz waveform information remotely without losing the signal to noise ratio, etc. In this review, after introducing different THz air-photonics techniques to overcome the difficulties of THz remote sensing, we focus mainly on theoretical and experimental methods to improve THz generation and detection performance for the purpose of remote sensing through tailoring the generation and detection media, air-plasma.

For the THz generation part, auto-focusing ring-Airy beam was introduced to enhance the THz wave generation yield from two-color laser induced air plasma. By artificially modulated exotic wave packets, it is exhibited that abruptly auto-focusing beam induced air-plasma can give an up to 5.3-time-enhanced THz wave pulse energy compared to normal Gaussian beam induced plasma under the same conditions. At the same time, a red shift on the THz emission spectrum is also observed. A simulation using an interference model to qualitatively describe these behaviors has be developed.

For the THz detection part, the results of THz remote sensing at 30 m using THz-radiation-enhanced-emission-of-fluorescence (THz-REEF) technique are demonstrated, which greatly improved from the 10 m demonstration last reported. The THz-REEF technique in the counter-propagation geometry was explored, which is proved to be more practical for stand-off detections than co-propagation geometry. We found that in the counter-propagating geometry the maximum amplitude of the REEF signal is comparable to that in the co-propagating case, whereas the time resolved REEF trace significantly changes. By performing the study with different plasmas, we observed that in the counter-propagating geometry the shape of the REEF trace depends strongly on the plasma length and electron density. A new theoretical model suggesting that the densest volume of the plasma does not contribute to the fluorescence enhancement is proposed to reproduce the experimental measurements.

Our results further the understanding of the THz-plasma interaction and highlight the potential of THz-REEF technique in the plasma detection applications.

Keywords

ultrafast terahertz (THz) techniques / THz air-photonics / ring-Airy beams / THz-radiation-enhanced-emission-of-fluorescence (THz-REEF) of air-plasma in co-propagation geometry / THz-REEF of air-plasma in counter-propagation geometry

Cite this article

Download citation ▾
Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review. Front. Optoelectron., 2019, 12(2): 117‒147 https://doi.org/10.1007/s12200-018-0860-7

References

[1]
Zhang X C, Xu J. Introduction to THz Wave Photonics. New York: Springer, 2010
[2]
Zhang X C. Teaching note, 2013
[3]
Fixsen D J, Cheng E S, Gales J M, Mather J C, Shafer R A, Wright E L. The cosmic microwave background spectrum from the full cobefiras data set. Astrophysical Journal, 1996, 473(2): 576–587
CrossRef Google scholar
[4]
Leisawitz D T, Danchi W C, DiPirro M J, Feinberg L D, Gezari D Y, Hagopian M, Langer W D, Mather J C, Moseley S H, Shao M, Silverberg R F, Staquhn J G, Swain M R, Yorke H W, Zhang X L. Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. In: Proceedings of SPIE 4013, UV, Optical, and IR Space Telescopes and Instruments. International Society for Optics and Photonics, 2000, 36–47
[5]
Phillips T G, Keene J. Submillimeter astronomy (heterodyne spectroscopy). Proceedings of the IEEE, 1992, 80(11): 1662–1678
CrossRef Google scholar
[6]
Majumdar A K. Advanced Free Space Optics (FSO): A Systems Approach. New York: Springer, 2014
[7]
Liu H B, Chen Y, Bastiaans G J, Zhang X C. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Optics Express, 2006, 14(1): 415–423
CrossRef Pubmed Google scholar
[8]
Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R. Wideband terahertz spectroscopy of explosives. Chemical Physics Letters, 2007, 434(4–6): 227–230
CrossRef Google scholar
[9]
Davies A G, Burnett A D, Fan W, Linfield E H, Cunningham J E. Terahertz spectroscopy of explosives and drugs. Materials Today, 2008, 11(3): 18–26
[10]
Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D. Thz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology, 2005, 20(7): S266–S280
CrossRef Google scholar
[11]
Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
CrossRef Google scholar
[12]
Roobottom C A, Mitchell G, Morgan-Hughes G. Radiation-reduction strategies in cardiac computed tomographic angiography. Clinical Radiology, 2010, 65(11): 859–867
CrossRef Pubmed Google scholar
[13]
Alexandrov B S, Gelev V, Bishop A R, Usheva A, Rasmussen K O. DNA breathing dynamics in the presence of a terahertz field. Physics Letters A, 2010, 374(10): 1214–1217
CrossRef Pubmed Google scholar
[14]
Siegel P H, Pikov V. Impact of low intensity millimetre waves on cell functions. Electronics Letters, 2010, 46(26): 70–72
CrossRef Google scholar
[15]
Chen J, Chen Y, Zhao H, Bastiaans G J, Zhang X C. Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz. Optics Express, 2007, 15(19): 12060–12067
CrossRef Pubmed Google scholar
[16]
Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science. Nature Photonics, 2017, 11(1): 16–18
CrossRef Google scholar
[17]
Lee Y S. Principles of Terahertz Science and Technology. New York: Springer, 2009
[18]
Auston D H. Picosecond optoelectronic switching and gating in silicon. Applied Physics Letters, 1975, 26(3): 101–103
CrossRef Google scholar
[19]
Tani M, Matsuura S, Sakai K, Nakashima S. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Applied Optics, 1997, 36(30): 7853–7859
CrossRef Pubmed Google scholar
[20]
Auston D H, Cheung K P, Smith P R. Picosecond photoconducting hertzian dipoles. Applied Physics Letters, 1984, 45(3): 284–286
CrossRef Google scholar
[21]
Ropagnol X, Khorasaninejad M, Raeiszadeh M, Safavi-Naeini S, Bouvier M, Côté C Y, Laramée A, Reid M, Gauthier M A, Ozaki T. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas. Optics Express, 2016, 24(11): 11299–11311
CrossRef Pubmed Google scholar
[22]
Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004
CrossRef Google scholar
[23]
Boyd R W. Nonlinear Optics. Oxford: Elsevier, 2008
[24]
Kitaeva G Kh. Terahertz generation by means of optical lasers. Laser Physics Letters, 2008, 5(8): 559–576
CrossRef Google scholar
[25]
Reimann K. Table-top sources of ultrashort Thz pulses. Reports on Progress in Physics, 2007, 70(10): 1597–1632
CrossRef Google scholar
[26]
Rice A, Jin Y, Ma X F, Zhang X C, Bliss D, Larkin J, Alexander M. Terahertz optical rectification from<110>zinc-blende crystals. Applied Physics Letters, 1994, 64(11): 1324–1326
CrossRef Google scholar
[27]
Yang K H, Richards P L, Shen Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3. Applied Physics Letters, 1971, 19(9): 320–323
CrossRef Google scholar
[28]
Hebling J, Almasi G, Kozma I, Kuhl J. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166
CrossRef Pubmed Google scholar
[29]
Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pulses by tilted pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19
CrossRef Google scholar
[30]
Fülöp J A, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, Hebling J. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters, 2012, 37(4): 557–559
CrossRef Pubmed Google scholar
[31]
Hirori H, Doi A, Blanchard F, Tanaka K. Single-cycle terahertz pulses with amplitudes exceeding 1 mV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106
CrossRef Google scholar
[32]
Zhang X C, Ma X F, Jin Y, Lu T M, Boden E P, Phelps P D, Stewart K R, Yakymyshyn C P. Terahertz optical rectification from a nonlinear organic crystal. Applied Physics Letters, 1992, 61(26): 3080–3082
CrossRef Google scholar
[33]
Hauri C P, Ruchert C, Vicario C, Ardana F. Strong-field single-cycle THz pulses generated in an organic crystal. Applied Physics Letters, 2011, 99(16): 161116
CrossRef Google scholar
[34]
Shalaby M, Hauri C P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nature Communications, 2015, 6(1): 5976
CrossRef Pubmed Google scholar
[35]
Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728
CrossRef Pubmed Google scholar
[36]
Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
CrossRef Pubmed Google scholar
[37]
Dai J, Clough B, Ho I C, Lu X, Liu J, Zhang X C. Recent progresses in terahertz wave air photonics. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 274–281
CrossRef Google scholar
[38]
Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nature Photonics, 2008, 2(10): 605–609
CrossRef Google scholar
[39]
Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525
CrossRef Google scholar
[40]
Nuss M C, Auston D H, Capasso F. Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide. Physical Review Letters, 1987, 58(22): 2355–2358
CrossRef Pubmed Google scholar
[41]
van Exter M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Optics Letters, 1989, 14(20): 1128–1130
CrossRef Pubmed Google scholar
[42]
Morales G J, Lee Y C. Ponderomotive-force effects in a nonuniform plasma. Physical Review Letters, 1974, 33(17): 1016–1019
CrossRef Google scholar
[43]
Liu K, Buccheri F, Zhang X C. Thz science and technology of micro-plasma. Physics (Chinese Wuli), 2015, 44: 497–502
[44]
Hamster H, Sullivan A, Gordon S, Falcone R W. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1994, 49(1): 671–677
CrossRef Pubmed Google scholar
[45]
Löffler T, Jacob F, Roskos H G. Generation of terahertz pulses by photoionization of electrically biased air. Applied Physics Letters, 2000, 77(3): 453–455
CrossRef Google scholar
[46]
D’Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Couairon A, Tikhonchuk V T. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Physical Review Letters, 2007, 98(23): 235002
CrossRef Pubmed Google scholar
[47]
Amico C D, Houard A, Akturk S, Liu Y, Le Bloas J, Franco M, Prade B, Couairon A, Tikhonchuk V T, Mysyrowicz A. Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment. New Journal of Physics, 2008, 10(1): 013015
CrossRef Google scholar
[48]
Buccheri F, Zhang X C. Terahertz emission from laser induced microplasma in ambient air. Optica, 2015, 2(4): 366–369
CrossRef Google scholar
[49]
Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005
CrossRef Pubmed Google scholar
[50]
Kress M, Löffler T, Eden S, Thomson M, Roskos H G. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Optics Letters, 2004, 29(10): 1120–1122
CrossRef Pubmed Google scholar
[51]
Clough B, Dai J M, Zhang X C. Laser air photonics: covering the “terahertz gap” and beyond. Zhongguo Wuli Xuekan, 2014, 52(1): 416–430
[52]
Chen Y, Yamaguchi M, Wang M, Zhang X C. Terahertz pulse generation from noble gases. Applied Physics Letters, 2007, 91(25): 251116
CrossRef Google scholar
[53]
Dai J, Liu J, Zhang X C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183–190
CrossRef Google scholar
[54]
Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001
CrossRef Pubmed Google scholar
[55]
Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
CrossRef Pubmed Google scholar
[56]
Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001
CrossRef Pubmed Google scholar
[57]
You Y S, Oh T I, Kim K Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Physical Review Letters, 2012, 109(18): 183902
CrossRef Pubmed Google scholar
[58]
Blank V, Thomson M D, Roskos H G. Spatio-spectral characteristics of ultra-broadband THz emission from two-colour photo excited gas plasmas and their impact for nonlinear spectroscopy. New Journal of Physics, 2013, 15(7): 075023
CrossRef Google scholar
[59]
Manceau J M, Massaouti M, Tzortzakis S. Strong terahertz emission enhancement via femtosecond laser filament concatenation in air. Optics Letters, 2010, 35(14): 2424–2426
CrossRef Pubmed Google scholar
[60]
Liu J, Zhang X C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103(23): 235002
CrossRef Pubmed Google scholar
[61]
Liu J, Dai J, Chin S L, Zhang X C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631
CrossRef Google scholar
[62]
Clough B, Liu J, Zhang X C. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters, 2010, 35(21): 3544–3546
CrossRef Pubmed Google scholar
[63]
Cook D J, Chen J X, Morlino E A, Hochstrasser R M. Terahertz field-induced second-harmonic generation measurements of liquid dynamics. Chemical Physics Letters, 1999, 309(3–4): 221–228
CrossRef Google scholar
[64]
Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903
CrossRef Pubmed Google scholar
[65]
Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131
CrossRef Google scholar
[66]
Clough B, Dai J, Zhang X C. Laser air photonics: beyond the terahertz gap. Materials Today, 2012, 15(1–2): 50–58
CrossRef Google scholar
[67]
Lu X, Karpowicz N, Chen Y, Zhang X C. Systematic study of broadband terahertz gas sensor. Applied Physics Letters, 2008, 93(26): 261106
CrossRef Google scholar
[68]
Zalkovskij M, Zoffmann Bisgaard C, Novitsky A, Malureanu R, Savastru D, Popescu A, Uhd Jepsen P, Lavrinenko A V. Ultrabroadband terahertz spectroscopy of chalcogenide glasses. Applied Physics Letters, 2012, 100(3): 031901
CrossRef Google scholar
[69]
D’Angelo F, Mics Z, Bonn M, Turchinovich D. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Optics Express, 2014, 22(10): 12475–12485
CrossRef Pubmed Google scholar
[70]
Yang Y, Mandehgar M, Grischkowsky D R. Broadband THz pulse transmission through the atmosphere. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 264–273
CrossRef Google scholar
[71]
Sun X, Buccheri F, Dai J, Zhang X C. Review of THz wave air photonics. In: Proceedings of SPIE 8562, Infrared, Millimeter-Wave, and Terahertz Technologies II. SPIE, 2012, 856202
[72]
Clough B, Liu J, Zhang X C. “All air-plasma” terahertz spectroscopy. Optics Letters, 2011, 36(13): 2399–2401
CrossRef Pubmed Google scholar
[73]
Berry M V, Balazs N L. Nonspreading wave packets. American Journal of Physics, 1979, 47(3): 264–267
CrossRef Google scholar
[74]
Unnikrishnan K, Rau A R P. Uniqueness of the Airy packet in quantum mechanics. American Journal of Physics, 1996, 64(8): 1034–1035
CrossRef Google scholar
[75]
Schiff L I. Quantum Mechanics. Oxford: McGraw-Hill Education (India) Pvt Limited, 1968
[76]
Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory. Journal of the Optical Society of America A, Optics and Image Science, 1987, 4(4): 651–654
CrossRef Google scholar
[77]
Durnin J, Miceli J Jr, Eberly J H. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499–1501
CrossRef Pubmed Google scholar
[78]
McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemporary Physics, 2005, 46(1): 15–28
CrossRef Google scholar
[79]
Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams. Optics Letters, 2000, 25(20): 1493–1495
CrossRef Pubmed Google scholar
[80]
Bandres M A, Gutiérrez-Vega J C. Ince-Gaussian beams. Optics Letters, 2004, 29(2): 144–146
CrossRef Pubmed Google scholar
[81]
Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams. Optics Letters, 2007, 32(8): 979–981
CrossRef Pubmed Google scholar
[82]
Siviloglou G A, Broky J, Dogariu A, Christodoulides D N. Observation of accelerating Airy beams. Physical Review Letters, 2007, 99(21): 213901
CrossRef Pubmed Google scholar
[83]
Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S. Spatiotemporal Airy light bullets in the linear and nonlinear regimes. Physical Review Letters, 2010, 105(25): 253901
CrossRef Pubmed Google scholar
[84]
Chong A, Renninger W H, Christodoulides D N, Wise F W. Airy–Bessel wave packets as versatile linear light bullets. Nature Photonics, 2010, 4(2): 103–106
CrossRef Google scholar
[85]
Papazoglou D G, Efremidis N K, Christodoulides D N, Tzortzakis S. Observation of abruptly auto focusing waves. Optics Letters, 2011, 6(10): 1842–1844
Pubmed
[86]
Efremidis N K, Christodoulides D N. Abruptly autofocusing waves. Optics Letters, 2010, 35(23): 4045–4047
CrossRef Pubmed Google scholar
[87]
PapazoglouD G. Personal communication, 2015
[88]
Chremmos I, Efremidis N K, Christodoulides D N. Pre-engineered abruptly autofocusing beams. Optics Letters, 2011, 36(10): 1890–1892
CrossRef Pubmed Google scholar
[89]
Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C. Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams. Optica, 2016, 3(6): 605–608
CrossRef Google scholar
[90]
Koulouklidis A D, Papazoglou D G, Fedorov V Y, Tzortzakis S. Phase memory preserving harmonics from abruptly autofocusing beams. Physical Review Letters, 2017, 119(22): 223901
CrossRef Google scholar
[91]
Papazoglou D G, Fedorov V Y, Tzortzakis S. Janus waves. Optics Letters, 2016, 41(20): 4656–4659
CrossRef Pubmed Google scholar
[92]
Panagiotopoulos P, Papazoglou D G, Couairon A, Tzortzakis S. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nature Communications, 2013, 4(1): 2622
CrossRef Pubmed Google scholar
[93]
Polynkin P, Kolesik M, Roberts A, Faccio D, Di Trapani P, Moloney J. Generation of extended plasma channels in air using femtosecond Bessel beams. Optics Express, 2008, 16(20): 15733–15740
CrossRef Pubmed Google scholar
[94]
Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N. Curved plasma channel generation using ultraintense Airy beams. Science, 2009, 324(5924): 229–232
CrossRef Pubmed Google scholar
[95]
Scheller M, Mills M S, Miri M A, Cheng W, Moloney J V, Kolesik M, Polynkin P, Christodoulides D N. Externally refuelled optical filaments. Nature Photonics, 2014, 8(4): 297–301
[96]
Matsubara E, Nagai M, Ashida M. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses. Applied Physics Letters, 2012, 101(1): 011105
CrossRef Google scholar
[97]
Manceau J M, Averchi A, Bonaretti F, Faccio D, Di Trapani P, Couairon A, Tzortzakis S. Terahertz pulse emission optimization from tailored femtosecond laser pulse filamentation in air. Optics Letters, 2009, 34(14): 2165–2167
CrossRef Pubmed Google scholar
[98]
Zhao J, Guo L, Chu W, Zeng B, Gao H, Cheng Y, Liu W. Simple method to enhance terahertz radiation from femtosecond laser filament array with a step phase plate. Optics Letters, 2015, 40(16): 3838–3841
CrossRef Pubmed Google scholar
[99]
Chu X. Evolution of an Airy beam in turbulence. Optics Letters, 2011, 36(14): 2701–2703
CrossRef Pubmed Google scholar
[100]
Dolev I, Kaminer I, Shapira A, Segev M, Arie A. Experimental observation of self-accelerating beams in quadratic nonlinear media. Physical Review Letters, 2012, 108(11): 113903
CrossRef Google scholar
[101]
Dai J, Zhang X C. Terahertz wave generation from thin metal films excited by asymmetrical optical fields. Optics Letters, 2014, 39(4): 777–780
CrossRef Pubmed Google scholar
[102]
Roskos H G, Thomson M D, Kreß M, Löffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications. Laser & Photonics Reviews, 2007, 1(4): 349–368
CrossRef Google scholar
[103]
Oh T I, You Y S, Jhajj N, Rosenthal E W, Milchberg H M, Kim K Y. Scaling and saturation of high-power terahertz radiation generation in two-color laser filamentation. Applied Physics Letters, 2013, 102(20): 201113
CrossRef Google scholar
[104]
Gorodetsky A, Koulouklidis A D, Massaouti M, Tzortzakis S. Physics of the conical broadband terahertz emission from two-color laser-induced plasma filaments. Physical Review A., 2014, 89(3): 033838
CrossRef Google scholar
[105]
Talebpour A, Petit S, Chin S L. Re-focusing during the propagation of a focused femtosecond Ti:sapphire laser pulse in air. Optics Communications, 1999, 171(4–6): 285–290
CrossRef Google scholar
[106]
Clough B, Karpowicz N, Zhang X C. Modulation of electron trajectories inside a filament for single-scan coherent terahertz wave detection. Applied Physics Letters, 2012, 100(12): 121105
CrossRef Google scholar
[107]
Buccheri F, Liu K, Zhang X C. Terahertz radiation enhanced emission of fluorescence from elongated plasmas and microplasmas in the counter-propagating geometry. Applied Physics Letters, 2017, 111(9): 091103
CrossRef Google scholar
[108]
Martin F, Mawassi R, Vidal F, Gallimberti I, Comtois D, Pepin H, Kieffer J C, Mercure H P. Spectroscopic study of ultrashort pulse laser breakdown plasmas in air. Applied Spectroscopy, 2002, 56(11): 1444–1452
CrossRef Google scholar
[109]
Liu J, Zhang X C. Enhancement of laser-induced fluorescence by intense terahertz pulses in gases. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 229–236
CrossRef Google scholar
[110]
Liu J, Dai J, Zhang X C. Ultrafast broadband terahertz waveform measurement utilizing ultraviolet plasma photoemission. Journal of the Optical Society of America B, Optical Physics, 2011, 28(4): 796–804
CrossRef Google scholar

Acknowledgements

This research was sponsored by the Army Research Office and was accomplished under Grant Nos. US ARMY W911NF-14-1-0343, W911NF-16-1-0436, and W911NF-17-1-0428. And we would like to appreciate the National Natural Science Foundation of China (NSFC) for supporting Pingjie Huang (Grant Nos. 61473255 and 61873234).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3810 KB)

Accesses

Citations

Detail

Sections
Recommended

/