On-chip programmable pulse processor employing cascaded MZI-MRR structure

Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG

PDF(3413 KB)
PDF(3413 KB)
Front. Optoelectron. ›› 2019, Vol. 12 ›› Issue (2) : 148-156. DOI: 10.1007/s12200-018-0846-5
RESEARCH ARTICLE
RESEARCH ARTICLE

On-chip programmable pulse processor employing cascaded MZI-MRR structure

Author information +
History +

Abstract

Optical pulse processor meets the urgent demand for high-speed, ultra wideband devices, which can avoid electrical confinements in various fields, e.g., all-optical communication, optical computing technology, coherent control and microwave fields. To date, great efforts have been made particularly in on-chip programmable pulse processing. Here, we experimentally demonstrate a programmable pulse processor employing 16-cascaded Mach-Zehnder interferometer coupled microring resonator (MZI-MRR) structure based on silicon-on-insulator wafer. With micro-heaters loaded to the device, both amplitude and frequency tunings can be realized in each MZI-MRR unit. Thanks to its reconfigurability and integration ability, the pulse processor has exhibited versatile functions. First, it can serve as a fractional differentiator whose tuning range is 0.51−2.23 with deviation no more than 7%. Second, the device can be tuned into a programmable optical filter whose bandwidth varies from 0.15 to 0.97 nm. The optical filter is also shape tunable. Especially, 15-channel wavelength selective switches are generated.

Keywords

integrated optics devices / optical processing / all-optical devices / pulse shaping

Cite this article

Download citation ▾
Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Front. Optoelectron., 2019, 12(2): 148‒156 https://doi.org/10.1007/s12200-018-0846-5

References

[1]
Li M, Zhu N. Recent advances in microwave photonics. Frontiers of Optoelectronics, 2016, 9(2): 160–185
CrossRef Google scholar
[2]
Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330
CrossRef Google scholar
[3]
Weiner A M. Ultrafast optical pulse shaping: a tutorial review. Optics Communications, 2011, 284(15): 3669–3692
CrossRef Google scholar
[4]
Yao J. Photonic generation of microwave arbitrary waveforms. Optics Communications, 2011, 284(15): 3723–3736
CrossRef Google scholar
[5]
Azaña J, Chen L R. Synthesis of temporal optical waveforms by fiber Bragg gratings: a new approach based on space-to-frequency-to-time mapping. Journal of the Optical Society of America B, Optical Physics, 2002, 19(11): 2758–2769
CrossRef Google scholar
[6]
Leaird D E, Weiner A M. Femtosecond direct space-to-time pulse shaping in an integrated-optic configuration. Optics Letters, 2004, 29(13): 1551–1553
CrossRef Pubmed Google scholar
[7]
Shen M, Minasian R A. Toward a high-speed arbitrary waveform generation by a novel photonic processing structure. IEEE Photonics Technology Letters, 2004, 16(4): 1155–1157
CrossRef Google scholar
[8]
Liao S, Ding Y, Peucheret C, Yang T, Dong J, Zhang X. Integrated programmable photonic filter on the silicon-on-insulator platform. Optics Express, 2014, 22(26): 31993–31998
CrossRef Pubmed Google scholar
[9]
Wang J, Shen H, Fan L, Wu R, Niu B, Varghese L T, Xuan Y, Leaird D E, Wang X, Gan F, Weiner A M, Qi M. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nature Communications, 2015, 6(1): 5957
CrossRef Pubmed Google scholar
[10]
Weiner A M. Femtosecond pulse shaping using spatial light modulators. Review of Scientific Instruments, 2000, 71(5): 1929–1960
CrossRef Google scholar
[11]
McKinney J D, Lin I S, Weiner A M. Shaping the power spectrum of ultra-wideband radio-frequency signals. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(12): 4247–4255
CrossRef Google scholar
[12]
Stowe M C, Pe'er A, Ye J. High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb. In: Proceedings of 15th International Conference on Ultrafast Phenomena. Pacific Grove: Optical Society of America, 2006, MD8
[13]
Fontaine N K, Scott R P, Cao J, Karalar A, Jiang W, Okamoto K, Heritage J P, Kolner B H, Yoo S J B. 32 Phase X 32 amplitude optical arbitrary waveform generation. Optics Letters, 2007, 32(7): 865–867
CrossRef Pubmed Google scholar
[14]
Jiang Z, Huang C B, Leaird D E, Weiner A M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photonics, 2007, 1(8): 463–467
CrossRef Google scholar
[15]
Kyotoku B B C, Chen L, Lipson M. Sub-nm resolution cavity enhanced microspectrometer. Optics Express, 2010, 18(1): 102–107
CrossRef Pubmed Google scholar
[16]
Chou J, Han Y, Jalali B. Adaptive RF-photonic arbitrary waveform generator. IEEE Photonics Technology Letters, 2003, 15(4): 581–583
CrossRef Google scholar
[17]
Dai Y, Chen X, Ji H, Xie S. Optical arbitrary waveform generation based on sampled fiber Bragg gratings. IEEE Photonics Technology Letters, 2007, 19(23): 1916–1918
CrossRef Google scholar
[18]
Khan M H, Shen H, Xuan Y, Zhao L, Xiao S, Leaird D E, Weiner A M, Qi M. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nature Photonics, 2010, 4(2): 117–122
CrossRef Google scholar
[19]
Bolea M, Mora J, Ortega B, Capmany J. Optical arbitrary waveform generator using incoherent microwave photonic filtering. IEEE Photonics Technology Letters, 2011, 23(10): 618–620
CrossRef Google scholar
[20]
Zhang H, Zou W, Chen J. Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion. Optics Letters, 2015, 40(6): 1085–1088
CrossRef Pubmed Google scholar
[21]
Yan S, Gao S, Zhou F, Ding Y, Dong J, Cai X, Zhang X. Photonic linear chirped microwave signal generation based on the ultra-compact spectral shaper using the slow light effect. Optics Letters, 2017, 42(17): 3299–3302
CrossRef Pubmed Google scholar
[22]
Ashrafi R, Dizaji M R, Cortés L R, Zhang J, Yao J, Azaña J, Chen L R. Time-delay to intensity mapping based on a second-order optical integrator: application to optical arbitrary waveform generation. Optics Express, 2015, 23(12): 16209–16223
CrossRef Pubmed Google scholar
[23]
Takenouchi H, Tsuda H, Naganuma K, Kurokawa T, Inoue Y, Okamoto K. Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter. Electronics Letters, 1998, 34(12): 1245–1246
CrossRef Google scholar
[24]
Liao S, Ding Y, Dong J, Yang T, Chen X, Gao D, Zhang X. Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper. Optics Express, 2015, 23(9): 12161–12173
CrossRef Pubmed Google scholar
[25]
Wang X, Zhou L, Li R, Xie J, Lu L, Wu K, Chen J. Continuously tunable ultra-thin silicon waveguide optical delay line. Optica, 2017, 4(5): 507
CrossRef Google scholar
[26]
Liu Y, Choudhary A, Marpaung D, Eggleton B J. Gigahertz optical tuning of an on-chip radio frequency photonic delay line. Optica, 2017, 4(4): 418
CrossRef Google scholar
[27]
Burla M, Marpaung D, Zhuang L, Roeloffzen C, Khan M R, Leinse A, Hoekman M, Heideman R. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Optics Express, 2011, 19(22): 21475–21484
CrossRef Pubmed Google scholar
[28]
Efimov A, Reitze D H. Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier. Optics Letters, 1998, 23(20): 1612–1614
CrossRef Pubmed Google scholar
[29]
Doerr C R, Marom D M, Cappuzzo M A, Chen E Y. 40-Gb/s colorless tunable dispersion compensator with 1000-ps/nm tuning range employing a planar lightwave circuit and a deformable mirror. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference. Anaheim: Optical Society of America, 2005, PDP5
[30]
Weiner A M, Ferdous F, Wang P H, Leaird D E, Wang J, Fan L, Varghese L T, Niu B, Xuan Y, Qi M, Miao H, Srinivasan K, Chen L, Aksyuk V. Microresonator-based optical frequency combs: time-domain studies. In: Proceedings of Conference on Lasers and Electro-Optics. San Jose: Optical Society of America, 2012, FTh1G.1
[31]
Fontaine N K, Scott R P, Yoo S J B. Dynamic optical arbitrary waveform generation and detection in InP photonic integrated circuits for Tb/s optical communications. Optics Communications, 2011, 284(15): 3693–3705
CrossRef Google scholar
[32]
Rasras M S, Kang I, Dinu M, Jaques J, Dutta N, Piccirilli A, Cappuzzo M A, Chen E Y, Gomez L T, Wong-Foy A, Cabot S, Johnson G S, Buhl L, Patel S S. A programmable 8-bit optical correlator filter for optical bit pattern recognition. IEEE Photonics Technology Letters, 2008, 20(9): 694–696
CrossRef Google scholar
[33]
Zhang B, Zhang L, Yan L S, Fazal I, Yang J Y, Willner A E. Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line. Optics Express, 2007, 15(13): 8317–8322
CrossRef Pubmed Google scholar
[34]
Supradeepa V R, Long C M, Wu R, Ferdous F, Hamidi E, Leaird D E, Weiner A M. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nature Photonics, 2012, 6(3): 186–194
CrossRef Google scholar
[35]
Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. Journal of Lightwave Technology, 2006, 24(1): 201–229
CrossRef Google scholar
[36]
Meijerink A, Roeloffzen C G H, Meijerink R, Zhuang L, Marpaung D A I, Bentum M J, Burla M, Verpoorte J, Jorna P, Hulzinga A, van Etten W. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part I: design and performance analysis. Journal of Lightwave Technology, 2010, 28(1): 3–18
CrossRef Google scholar
[37]
Zhuang L, Roeloffzen C G H, Meijerink A, Burla M, Marpaung D A I, Leinse A, Hoekman M, Heideman R G, van Etten W. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part II: experimental prototype. Journal of Lightwave Technology, 2010, 28(1): 19–31
CrossRef Google scholar
[38]
Wang C, Yao J. Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating. Journal of Lightwave Technology, 2010, 28(11): 1652–1660
CrossRef Google scholar
[39]
Capmany J, Pastor D, Ortega B. New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7): 1321–1326
CrossRef Google scholar
[40]
Marpaung D, Roeloffzen C, Heideman R, Leinse A, Sales S, Capmany J. Integrated microwave photonics. Laser & Photonics Reviews, 2013, 7(4): 506–538
CrossRef Google scholar
[41]
Soares F M, Fontaine N K, Scott R P, Baek J H, Zhou X, Su T, Cheung S, Wang Y, Junesand C, Lourdudoss S, Liou K Y, Hamm R A, Wang W, Patel B, Gruezke L A, Tsang W T, Heritage J P, Yoo S J B. Monolithic InP 100-channel × 10-GHz device for optical arbitrary waveform generation. IEEE Photonics Journal, 2011, 3(6): 975–985
CrossRef Google scholar
[42]
Tsuda H, Tanaka Y, Shioda T, Kurokawa T. Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing. Journal of Lightwave Technology, 2008, 26(6): 670–677
CrossRef Google scholar
[43]
Zhang W, Yao J. Photonic generation of linearly chirped microwave waveform with a large time-bandwidth product using a silicon-based on-chip spectral shaper. In: Proceedings of 2015 International Topical Meeting on Microwave Photonics (MWP). Paphos: IEEE, 2015, 1–4
[44]
Yang R, Zhou L, Wang M, Zhu H, Chen J. Application of SOI microring coupling modulation in microwave photonic phase shifters. Frontiers of Optoelectronics, 2016, 9(3): 483–488
CrossRef Google scholar
[45]
Xiao S, Khan M H, Shen H, Qi M. Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm. Journal of Lightwave Technology, 2008, 26(2): 228–236
CrossRef Google scholar
[46]
Zhuang L, Roeloffzen C G H, Hoekman M, Boller K J, Lowery A J. Programmable photonic signal processor chip for radiofrequency applications. Optica, 2015, 2(10): 854–859
CrossRef Google scholar
[47]
Liu W, Li M, Guzzon R S, Norberg E J, Parker J S, Lu M, Coldren L A, Yao J. A fully reconfigurable photonic integrated signal processor. Nature Photonics, 2016, 10(3): 190–195
CrossRef Google scholar
[48]
Xie Y, Zhuang L, Lowery A J. Picosecond optical pulse processing using a terahertz-bandwidth reconfigurable photonic integrated circuit. Nanophotonics, 2018, 7(5): 837–852
CrossRef Google scholar
[49]
Zhang W, Yao J. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing. Nature Communications, 2018, 9(1): 1396P
CrossRef Pubmed Google scholar
[50]
Xue X, Xuan Y, Kim H J, Wang J, Leaird D E, Qi M, Weiner A M. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. Journal of Lightwave Technology, 2014, 32(20): 3557–3565
CrossRef Google scholar
[51]
Chen L, Sherwood-Droz N, Lipson M. Compact bandwidth-tunable microring resonators. Optics Letters, 2007, 32(22): 3361–3363
CrossRef Pubmed Google scholar
[52]
Liu M, Zhao Y, Wang X, Zhang X, Gao S, Dong J, Cai X. Widely tunable fractional-order photonic differentiator using a Mach–Zenhder interferometer coupled microring resonator. Optics Express, 2017, 25(26): 33305
CrossRef Google scholar
[53]
Cuadrado-Laborde C. All-optical ultrafast fractional differentiator. Optical and Quantum Electronics, 2008, 40(13): 983–990
CrossRef Google scholar
[54]
Berger N K, Levit B, Fischer B, Kulishov M, Plant D V, Azaña J. Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating. Optics Express, 2007, 15(2): 371–381
CrossRef Pubmed Google scholar
[55]
Orlandi P, Morichetti F, Strain M J, Sorel M, Bassi P, Melloni A. Photonic integrated filter with widely tunable bandwidth. Journal of Lightwave Technology, 2014, 32(5): 897–907
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61475052 and 61622502).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3413 KB)

Accesses

Citations

Detail

Sections
Recommended

/