Optical signal processing based on silicon photonics waveguide Bragg gratings: review

Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña

PDF(1547 KB)
PDF(1547 KB)
Front. Optoelectron. ›› 2018, Vol. 11 ›› Issue (2) : 163-188. DOI: 10.1007/s12200-018-0813-1
REVIEW ARTICLE
REVIEW ARTICLE

Optical signal processing based on silicon photonics waveguide Bragg gratings: review

Author information +
History +

Abstract

This paper reviews the work done by researchers at INRS and UBC in the field of integrated microwave photonics (IMWPs) using silicon based waveguide Bragg gratings (WBGs). The grating design methodology is discussed in detail, including practical device fabrication considerations. On-chip implementations of various fundamental photonic signal processing units, including Fourier transformers, Hilbert transformers, ultrafast pulse shapers etc., are reviewed. Recent progress on WBGs-based IMWP subsystems, such as true time delay elements, phase shifters, real time frequency identification systems, is also discussed.

Keywords

silicon photonics / ultrafast optical signal processing / integrated microwave photonics (IMWPs)

Cite this article

Download citation ▾
Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review. Front. Optoelectron., 2018, 11(2): 163‒188 https://doi.org/10.1007/s12200-018-0813-1

References

[1]
Koenig S, Lopez-Diaz D, Antes J, Boes F, Henneberger R, Leuther A, Tessmann A, Schmogrow R, Hillerkuss D, Palmer R, Zwick T, Koos C, Freude W, Ambacher O, Leuthold J, Kallfass I. Wireless sub-THz communication system with high data rate. Nature Photonics, 2013, 7(12): 977–981
CrossRef Google scholar
[2]
Eyre J, Bier J. The evolution of DSP processors. IEEE Signal Processing Magazine, 2000, 17(2): 43–51
CrossRef Google scholar
[3]
Kuo S M, Lee B H, Tian W. Real-time Digital Signal Processing: Fundamentals, Implementations and Applications. New York: John Wiley & Sons, 2013
[4]
Seeds A J, Shams H, Fice M J, Renaud C C.Terahertz photonics for wireless communications. Journal of Lightwave Technology, 2015, 33 (3): 579–587
[5]
Nagatsuma T, Horiguchi S, Minamikata Y, Yoshimizu Y, Hisatake S, Kuwano S, Yoshimoto N, Terada J, Takahashi H. Terahertz wireless communications based on photonics technologies. Optics Express, 2013, 21(20): 23736–23747
CrossRef Pubmed Google scholar
[6]
Seeds A J. Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 877–887
CrossRef Google scholar
[7]
Iezekiel S. Microwave Photonics: Devices and Applications. New York: John Wiley & Sons, 2009
[8]
Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330
CrossRef Google scholar
[9]
Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335
CrossRef Google scholar
[10]
Marpaung D, Roeloffzen C, Heideman R, Leinse A, Sales S, Capmany J. Integrated microwave photonics. Laser & Photonics Reviews, 2013, 7(4): 506–538
CrossRef Google scholar
[11]
Roeloffzen C G, Zhuang L, Taddei C, Leinse A, Heideman R G, van Dijk P W, Oldenbeuving R M, Marpaung D A, Burla M, Boller K J. Silicon nitride microwave photonic circuits. Optics Express, 2013, 21(19): 22937–22961
CrossRef Pubmed Google scholar
[12]
Zhang W, Yao J. Silicon-based integrated microwave photonics. IEEE Journal of Quantum Electronics, 2016, 52: 1–12
[13]
Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon Microring Resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73
CrossRef Google scholar
[14]
Chrostowski L, Hochberg M.Silicon Photonics Design: From Devices to Systems. Cambridge: Cambridge University Press, 2015
[15]
Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 1997, 15(8): 1263–1276
CrossRef Google scholar
[16]
Bazargani H P, Burla M, Chrostowski L, Azaña J. Photonic Hilbert transformers based on laterally apodized integrated waveguide Bragg gratings on a SOI wafer. Optics Letters, 2016, 41(21): 5039–5042
CrossRef Pubmed Google scholar
[17]
Burla M, Wang X, Li M, Chrostowski L, Azaña J. Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip. Nature Communications, 2016, 7: 13004
CrossRef Pubmed Google scholar
[18]
Burla M, Li M, Cortés L R, Wang X, Fernández-Ruiz M R, Chrostowski L, Azaña J. Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon. Optics Letters, 2014, 39(21): 6241–6244
CrossRef Pubmed Google scholar
[19]
Burla M, Cortés L R, Li M, Wang X, Chrostowski L, Azaña J. On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit. Optics Letters, 2014, 39(21): 6181–6184
CrossRef Pubmed Google scholar
[20]
Burla M, Cortés L R, Li M, Wang X, Chrostowski L, Azaña J. Integrated waveguide Bragg gratings for microwave photonics signal processing. Optics Express, 2013, 21(21): 25120–25147
CrossRef Pubmed Google scholar
[21]
Dolgaleva K, Malacarne A, Tannouri P, Fernandes L A, Grenier J R, Aitchison J S, Azaña J, Morandotti R, Herman P R, Marques P V. Integrated optical temporal Fourier transformer based on a chirped Bragg grating waveguide. Optics Letters, 2011, 36(22): 4416–4418
CrossRef Pubmed Google scholar
[22]
Rutkowska K A, Duchesne D, Strain M J, Morandotti R, Sorel M, Azaña J. Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings. Optics Express, 2011, 19(20): 19514–19522
CrossRef Pubmed Google scholar
[23]
Bogaerts W, Selvaraja S K, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33–44
CrossRef Google scholar
[24]
Othonos A.Fiber Bragg gratings. Review of Scientific Instruments, 1997, 68 (12): 4309–4341
[25]
Vivien L, Osmond J, Fédéli J M, Marris-Morini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y, Laval S. 42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide. Optics Express, 2009, 17(8): 6252–6257
CrossRef Pubmed Google scholar
[26]
Skaar J. Synthesis and Characterization of Fiber Bragg Gratings. Dissertation for the Doctoral Degree. Trondheim, Norway: Norwegian University of Science and Technology, 2000
[27]
Sima C, Gates J C, Holmes C, Mennea P L, Zervas M N, Smith P G. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication. Optics Letters, 2013, 38(17): 3448–3451
CrossRef Pubmed Google scholar
[28]
Simard A D, Strain M J, Meriggi L, Sorel M, LaRochelle S. Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses. Optics Letters, 2015, 40(5): 736–739
CrossRef Pubmed Google scholar
[29]
Li M, Yao J. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Optics Letters, 2010, 35(2): 223–225
CrossRef Pubmed Google scholar
[30]
Simard A D, Belhadj N, Painchaud Y, LaRochelle S. Apodized silicon-on-insulator Bragg gratings. IEEE Photonics Technology Letters, 2012, 24(12): 1033–1035
CrossRef Google scholar
[31]
Wiesmann D, David C, Germann R, Emi D, Bona G. Apodized surface-corrugated gratings with varying duty cycles. IEEE Photonics Technology Letters, 2000, 12(6): 639–641
CrossRef Google scholar
[32]
Tan D T, Ikeda K, Fainman Y. Cladding-modulated Bragg gratings in silicon waveguides. Optics Letters, 2009, 34(9): 1357–1359
CrossRef Pubmed Google scholar
[33]
Hung Y J, Lin K H, Wu C J, Wang C Y, Chen Y J. Narrowband reflection from weakly coupled cladding-modulated Bragg gratings. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 218–224
CrossRef Google scholar
[34]
Wang X, Wang Y, Flueckiger J, Bojko R, Liu A, Reid A, Pond J, Jaeger N A, Chrostowski L. Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings. Optics Letters, 2014, 39(19): 5519–5522
CrossRef Pubmed Google scholar
[35]
Cheng R, Chrostowski L. Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings. Optics Letters, 2018, 43(5): 1031–1034
CrossRef Pubmed Google scholar
[36]
Agrawal G P, Radic S. Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing. IEEE Photonics Technology Letters, 1994, 6(8): 995–997
CrossRef Google scholar
[37]
Katsidis C C, Siapkas D I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Applied Optics, 2002, 41(19): 3978–3987
CrossRef Google scholar
[38]
Stoll H, Yariv A. Coupled-mode analysis of periodic dielectric waveguides. Optics Communications, 1973, 8(1): 5–8
CrossRef Google scholar
[39]
Yariv A. Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics, 1973, 9(9): 919–933
CrossRef Google scholar
[40]
Streifer W, Scifres D, Burnham R. Coupling coefficients for distributed feedback single-and double-heterostructure diode lasers. IEEE Journal of Quantum Electronics, 1975, 11(11): 867–873
CrossRef Google scholar
[41]
Zhang Y, Holzwarth N, Williams R. Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4. Physical Review B: Condensed Matter and Materials Physics, 1998, 57(20): 12738–12750
CrossRef Google scholar
[42]
Lumerical FDTD, 2018
[43]
Pendry J. Photonic band structures. Journal of Modern Optics, 1994, 41(2): 209–229
CrossRef Google scholar
[44]
Li Z Y, Lin L L. Photonic band structures solved by a plane-wave-based transfer-matrix method. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2003, 67(4 Pt 2): 046607
CrossRef Pubmed Google scholar
[45]
Applied Nanotools Inc., 2018
[46]
Simard A D, Beaudin G, Aimez V, Painchaud Y, Larochelle S. Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings. Optics Express, 2013, 21(20): 23145–23159
CrossRef Pubmed Google scholar
[47]
Ayotte N, Simard A D, LaRochelle S. Long integrated Bragg gratings for SOI wafer metrology. IEEE Photonics Technology Letters, 2015, 27(7): 755–758
CrossRef Google scholar
[48]
Simard A D, Painchaud Y, LaRochelle S. Integrated Bragg gratings in spiral waveguides. Optics Express, 2013, 21(7): 8953–8963
CrossRef Pubmed Google scholar
[49]
Wang X, Yun H, Chrostowski L. Integrated Bragg gratings in spiral waveguides. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO). San Jose, California: OSA, 2013, CTh4F.8
[50]
Ma M, Chen Z, Yun H, Wang Y, Wang X, Jaeger N A F, Chrostowski L. Apodized spiral Bragg grating waveguides in silicon-on-insulator. IEEE Photonics Technology Letters, 2018, 30(1): 111–114
CrossRef Google scholar
[51]
Simard A D, Ayotte N, Painchaud Y, Bedard S, LaRochelle S. Impact of sidewall roughness on integrated Bragg gratings. Journal of Lightwave Technology, 2011, 29(24): 3693–3704
CrossRef Google scholar
[52]
Azaña J, Muriel M A. Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings. IEEE Journal of Quantum Electronics, 2000, 36(5): 517–526
CrossRef Google scholar
[53]
Azaña J, Berger N K, Levit B, Fischer B. Spectral Fraunhofer regime: time-to-frequency conversion by the action of a single time lens on an optical pulse. Applied Optics, 2004, 43(2): 483–490
CrossRef Pubmed Google scholar
[54]
Yariv A, Yeh P. Photonics: Optical Electronics in Modern Communications. Oxford: Oxford University Press, 2006
[55]
Tong Y, Chan L, Tsang H. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope. Electronics Letters, 1997, 33(11): 983–985
CrossRef Google scholar
[56]
Muriel M A, Azaña J, Carballar A. Real-time Fourier transformer based on fiber gratings. Optics Letters, 1999, 24(1): 1–3
CrossRef Pubmed Google scholar
[57]
Coppinger F, Bhushan A, Jalali B. Photonic time stretch and its application to analog-to-digital conversion. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7): 1309–1314
CrossRef Google scholar
[58]
Chou J, Han Y, Jalali B. Adaptive RF-photonic arbitrary waveform generator. IEEE Photonics Technology Letters, 2003, 15(4): 581–583
CrossRef Google scholar
[59]
Solli D, Chou J, Jalali B. Amplified wavelength–time transformation for real-time spectroscopy. Nature Photonics, 2008, 2(1): 48–51
CrossRef Google scholar
[60]
Ouellette F. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Optics Letters, 1987, 12(10): 847–849
CrossRef Pubmed Google scholar
[61]
Lepetit L, Chériaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. Journal of the Optical Society of America B, 1995, 12(12): 2467–2474
CrossRef Google scholar
[62]
Weiner A. Ultrafast Optics, volume 72. New York: John Wiley & Sons, 2011
[63]
Rivas L M, Strain M J, Duchesne D, Carballar A, Sorel M, Morandotti R, Azaña J. Picosecond linear optical pulse shapers based on integrated waveguide Bragg gratings. Optics Letters, 2008, 33(21): 2425–2427
CrossRef Pubmed Google scholar
[64]
Ashrafi R, Li M, Belhadj N, Dastmalchi M, LaRochelle S, Azaña J. Experimental demonstration of superluminal space-to-time mapping in long period gratings. Optics Letters, 2013, 38(9): 1419–1421
CrossRef Google scholar
[65]
Li M, Dumais P, Ashrafi R, Bazargani H P, Quelene J B, Callender C, Azana J. Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach–Zehnder interferometers. IEEE Photonics Technology Letters, 2012, 24(16): 1387–1389
CrossRef Google scholar
[66]
Bazargani H P, Burla M, Azaña J. Experimental demonstration of sub-picosecond optical pulse shaping in silicon based on discrete space-to-time mapping. Optics Letters, 2015, 40(23): 5423–5426
CrossRef Google scholar
[67]
Bazargani H P, Azaña J. Optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers. Optics Express, 2015, 23(18): 23450–23461
CrossRef Google scholar
[68]
Bazargani H, Burla M, Chen Z, Zhang F, Chrostowski L, Azana J. Long-duration optical pulse shaping and complex coding on SOI. IEEE Photonics Journal, 2016, 8(4): 1–7
CrossRef Google scholar
[69]
Deng N, Liu Z, Wang X, Fu T, Xie W, Dong Y. Distribution of a phase-stabilized 100.02 GHz millimeter-wave signal over a 160 km optical fiber with 4.1 × 10−17 instability. Optics Express, 2018, 26(1): 339–346
CrossRef Google scholar
[70]
Liu Y, Marpaung D, Choudhary A, Eggleton B J. Highly selective and reconfigurable Si3N4 RF photonic notch filter with negligible RF losses. In: Proceedings of Lasers and Electro-Optics (CLEO). San Jose, CA, USA: IEEE, 2017, paper SM1O.7
[71]
Fandiño J SMuñoz PDoménech D, Capmany J. A monolithic integrated photonic microwave filter. Nature Photonics, 2017, 11(2): 124–129
CrossRef Google scholar
[72]
Zhuang L, Roeloffzen C G, Hoekman M, Boller K J, Lowery A J. Programmable photonic signal processor chip for radio frequency applications. Optica, 2015, 2(10): 854–859
CrossRef Google scholar
[73]
Capmany J, Gasulla I, Pérez D. The programmable processor. Nature Photonics, 2016, 10: 6–8
CrossRef Google scholar

Acknowledgements

We thank CMC Microsystems for enabling the fabrication of the silicon chips via ePIXfab, Lumerical Solutions Inc. for the design software and the NSERC SiEPIC CREATE Program. This research was supported in part by research grants from the FRQNT (Québec) and NSERC (Canada) agencies.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1547 KB)

Accesses

Citations

Detail

Sections
Recommended

/