Structure formation dynamics in drawing silica photonic crystal fibres

Wenyu WANG, Ghazal Fallah TAFTI, Mingjie DING, Yanhua LUO, Yuan TIAN, Shuai WANG, Tomasz KARPISZ, John CANNING, Kevin COOK, Gang-Ding PENG

PDF(385 KB)
PDF(385 KB)
Front. Optoelectron. ›› 2018, Vol. 11 ›› Issue (1) : 69-76. DOI: 10.1007/s12200-018-0775-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Structure formation dynamics in drawing silica photonic crystal fibres

Author information +
History +

Abstract

The special features of photonic crystal fibres (PCFs) are achieved by their air hole structures. PCF structure is determined and formed by its origin preform design and drawing process. Therefore, structure formation dynamics in drawing PCF is important for the fabrication of PCF achieving desirable structure and thus the intended feature. This paper will investigate structure formation dynamics of PCF drawing in relation to key parameters and conditions, such as hole dimension, temperature, pressure, etc.

Keywords

photonic crystal fibre (PCF) / structure formation / hole dimension / hole position / hole shift

Cite this article

Download citation ▾
Wenyu WANG, Ghazal Fallah TAFTI, Mingjie DING, Yanhua LUO, Yuan TIAN, Shuai WANG, Tomasz KARPISZ, John CANNING, Kevin COOK, Gang-Ding PENG. Structure formation dynamics in drawing silica photonic crystal fibres. Front. Optoelectron., 2018, 11(1): 69‒76 https://doi.org/10.1007/s12200-018-0775-3

References

[1]
Buczynski R. Photonic crystal fibers. Acta Physica Polonica A, 2004, 106(2): 141–167
CrossRef Google scholar
[2]
Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963
CrossRef Pubmed Google scholar
[3]
Stone J M. Photonic crystal fibres and their applications in the nonlinear regime. Dissertation for the Doctoral Degree. Bath: University of Bath, 2009
[4]
Michie A, Canning J, Lyytikäinen K, Aslund M, Digweed J. Temperature independent highly birefringent photonic crystal fibre. Optics Express, 2004, 12(21): 5160–5165
CrossRef Pubmed Google scholar
[5]
Wadsworth W, Percival R, Bouwmans G, Knight J, Russell P. High power air-clad photonic crystal fibre laser. Optics Express, 2003, 11(1): 48–53
CrossRef Pubmed Google scholar
[6]
Cook K, Canning J, Holdsworth J, Dewhurst C. Stable CW single-mode photonic crystal fiber DFB ring laser. Journal of Electronic Science and Technology of China, 2008, 6(4): 442–444
[7]
Groothoff N, Canning J, Ryan T, Lyytikainen K, Inglis H. Distributed feedback photonic crystal fibre (DFB-PCF) laser. Optics Express, 2005, 13(8): 2924–2930
CrossRef Pubmed Google scholar
[8]
Chen T, Chen R, Jewart C, Zhang B, Cook K, Canning J, Chen K P. Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing. Optics Letters, 2011, 36(18): 3542–3544
CrossRef Pubmed Google scholar
[9]
Michie A, Canning J, Bassett I, Haywood J, Digweed K, Ashton B, Stevenson M, Digweed J, Lau A, Scandurra D. Spun elliptically birefringent photonic crystal fibre for current sensing. Measurement Science & Technology, 2007, 18(10): 3070–3074
CrossRef Google scholar
[10]
Cook K, Canning J, Holdsworth J. Birefringent Bragg gratings in highly-nonlinear photonic crystal fiber. Journal of Electronic Science and Technology of China, 2008, 6(4): 426–428
[11]
Lyytikäinen K. Numerical simulation of a specialty optical fibre drawing process. In: Proceedings of 27th Australian Conference on Optical Fibre Technology. Australia: Sydney, 2002, 134–136
[12]
Lyytikäinen K, Råback P, Ruokolainen J. Numerical simulation of a specialty optical fibre drawing process. In: Proceedings of 4th International ASME/JSME/KSME Symp. Computational Technologies for Fluid/Thermal/Chemical/Stress System with Industrial Applications. Canada: Vancouver, BC, 2002, 267–275
[13]
Wynne R M. A Fabrication process for microstructured optical fibers. Journal of Lightwave Technology, 2006, 24(11): 4304–4313
CrossRef Google scholar
[14]
Fitt A D, Furusawa K, Monro T M, Please C P, Richardson D J. The mathematical modelling of capillary drawing for holey fibre manufacture. Journal of Engineering Mathematics, 2002, 43(2-4): 201–227
CrossRef Google scholar
[15]
Fitt A D, Furusawa K, Monro T M, Please C P. Modeling the fabrication of hollow fibers: capillary drawing. Journal of Lightwave Technology, 2001, 19(12): 1924–1931
CrossRef Google scholar
[16]
Yarin A L, Gospodinov P, Roussinov V I. Stability loss and sensitivity in hollow fiber drawing. Physics of Fluids, 1994, 6(4): 1454–1463
CrossRef Google scholar
[17]
Gospodinov P, Yarinz A L. Draw resonance of optical microcapillaries in non-isothermal drawing. International Journal of Multiphase Flow, 1997, 23(5): 967–976
CrossRef Google scholar
[18]
Wadsworth W, Witkowska A, Leon-Saval S, Birks T. Hole inflation and tapering of stock photonic crystal fibres. Optics Express, 2005, 13(17): 6541–6549
CrossRef Pubmed Google scholar
[19]
Chen Y, Birks T A. Predicting hole sizes after fibre drawing without knowing the viscosity. Optical Materials Express, 2013, 3(3): 346–356
CrossRef Google scholar
[20]
Lyytikäinen K, Zagari J, Barton G, Canning J. Heat transfer in a microstructured optical fibre preform. In: Proceedings of 11th International Plastic Optical Fibers Conference. Japan: Tokyo, 2002, 53–56
[21]
Lyytikäinen K, Zagari J, Barton G, Canning J. Heat transfer within a microstructured polymer optical fibre preform. Modelling and Simulation in Materials Science and Engineering, 2004, 12(3): S255
[22]
Lyytikainen K, Canning J, Digweed J, Zagari J. Geometry control of air-silica structured optical fibres using pressurisation. In: Proceedings of Microwave and Optoeletronics Conference. Brazil: Parana, 2003, 1001–1005
[23]
Lyytikäinen K J. Control of complex structural geometry in optical fibre drawing. Dissertation for the Doctoral Degree. Sydney: University of Sydney, 2004, 157–176
[24]
Chen Y. Hole control in photonic crystal fibres. Dissertation for the Doctoral Degree. Bath: University of Bath, 2013, 52–61
[25]
Guo T Y, Luo S Q, Li H L, Jian S L. Control of the fabrication parameters during the fabrication of photonic crystal fibers. Acta Physica Sinica, 2009, 58(9): 6308–6315
[26]
Lyytikainen K, Canning J, Digweed J, Zagari J. Geometry control of air-silica structured optical fibres. In: Proceedings of Optical Internet & Australian Conference on Optical Fibre Technology. Australia: Melbourne, 2003, 137–140
[27]
Wang W, Karpisz T, Tafti G, Canning J, Cook K, Luo Y, Peng G. Optimal pressure for tuning the lattice structure of photoinic crystal fibre. In: Proceedings of 3rd Australian and New Zealand Conference on Optics and Photonics. New Zealand: Queenstown, 2017, Paper 141
[28]
Tafti G, Wang W, Karpisz T, Canning J, Cook K, Luo Y, Wang S, Peng G. Fabrication and structure of H-Bi micro-structured optical fibres. In: Proceedings of 3rd Australian and New Zealand Conference on Optics and Photonics. New Zealand: Queenstown, 2017, Paper 142
[29]
Hoo Y L, Jin W, Shi C, Ho H L, Wang D N, Ruan S C. Design and modeling of a photonic crystal fiber gas sensor. Applied Optics, 2003, 42(18): 3509–3515
CrossRef Pubmed Google scholar

Acknowledgement

We thank AFRL, HEL-JTO and AFOSR/AOARD for providing the funding for this work under grant number FA2386-16-1-4031. T. K. thanks the support of the European Community project–PANTHER (Pacific Atlantic Network for Technical Higher Education and Research).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(385 KB)

Accesses

Citations

Detail

Sections
Recommended

/