Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM
Peng WANG, Aron MICHAEL, Chee Yee KWOK
Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM
This paper reviews an initial achievement of our group toward the development of on-chip parallel high-speed atomic force microscopy (HS-AFM). A novel AFM approach based on silicon waveguide cantilever displacement sensor is proposed. The displacement sensing approach uniquely allows the use of nano-scale wide cantilever that has a high resonance frequency and low spring constant desired for on-chip parallel HS-AFM. The approach consists of low loss silicon waveguide with nano-gap, highly efficient misalignment tolerant coupler, novel high aspect ratio (HAR) sharp nano-tips that can be integrated with nano-scale wide cantilevers and electrostatically driven nano-cantilever actuators. The simulation results show that the displacement sensor with optical power responsivity of 0.31%/nm and AFM cantilever with resonance frequency of 5.4 MHz and spring constant of 0.21 N/m are achievable with the proposed approach. The developed silicon waveguide fabrication method enables silicon waveguide with 6 and 7.5 dB/cm transmission loss for TE and TM modes, respectively, and formation of 13 nm wide nano-gaps between silicon waveguides. The coupler demonstrates misalignment tolerance of ±1.8 µm for 5 µm spot size lensed fiber and coupling loss of 2.12 dB/facet for standard cleaved single mode fiber without compromising other performance. The nano-tips with apex radius as small as 2.5 nm and aspect ratio of more than 50 has been enabled by the development of novel HAR nano-tip fabrication technique. Integration of the HAR tips onto an array of 460 nm wide cantilever beam has also been demonstrated.
atomic force microscopy (AFM) / silicon waveguide / silicon coupler / high aspect ratio (HAR) nano-tips
[1] |
Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters, 1986, 56(9): 930–933
CrossRef
Pubmed
Google scholar
|
[2] |
Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nature Nanotechnology, 2010, 5(3): 208–212
CrossRef
Pubmed
Google scholar
|
[3] |
Somnath S, Kim H J, Hu H, King W P. Parallel nanoimaging and nanolithography using a heated microcantilever array. Nanotechnology, 2014, 25(1): 014001
CrossRef
Pubmed
Google scholar
|
[4] |
Pantazi A, Sebastian A, Antonakopoulos T A, Bächtold P, Bonaccio A R, Bonan J, Cherubini G, Despont M, DiPietro R A, Drechsler U, Dürig U, Gotsmann B, Häberle W, Hagleitner C, Hedrick J L, Jubin D, Knoll A, Lantz M A, Pentarakis J, Pozidis H, Pratt R C, Rothuizen H, Stutz R, Varsamou M, Wiesmann D, Eleftheriou E. Probe-based ultrahigh-density storage technology. IBM Journal of Research and Development, 2008, 52(4.5): 493–511
CrossRef
Google scholar
|
[5] |
Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A. A high-speed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(22): 12468–12472
CrossRef
Pubmed
Google scholar
|
[6] |
Fukuda S, Uchihashi T, Iino R, Okazaki Y, Yoshida M, Igarashi K, Ando T. High-speed atomic force microscope combined with single-molecule fluorescence microscope. Review of Scientific Instruments, 2013, 84(7): 073706
CrossRef
Pubmed
Google scholar
|
[7] |
Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757
CrossRef
Pubmed
Google scholar
|
[8] |
Minne S C, Yaralioglu G, Manalis S R, Adams J D, Zesch J, Atalar A, Quate C F. Automated parallel high-speed atomic force microscopy. Applied Physics Letters, 1998, 72(18): 2340–2342
CrossRef
Google scholar
|
[9] |
Dukic M, Adams J D, Fantner G E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Scientific Reports, 2015, 5(1): 16393
CrossRef
Pubmed
Google scholar
|
[10] |
Giessibl J F. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Applied Physics Letters, 1998, 73(26): 3956–3958
CrossRef
Google scholar
|
[11] |
Göddenhenrich T, Lemke H, Hartmann U, Heiden C. Force microscope with capacitive displacement detection. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 1990, 8(1): 383–387
CrossRef
Google scholar
|
[12] |
von Schmidsfeld A, Nörenberg T, Temmen M, Reichling M. Understanding interferometry for micro-cantilever displacement detection. Beilstein Journal of Nanotechnology, 2016, 7: 841–851
CrossRef
Google scholar
|
[13] |
Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757
CrossRef
Pubmed
Google scholar
|
[14] |
Lee D H, Choo S J, Jung U, Lee K W, Kim K W, Park J H. Low-loss silicon waveguide with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching. Journal of Micromechanics and Microengineering, 2015, 25(1): 015003
CrossRef
Google scholar
|
[15] |
Dong P, Qian W, Liao S, Liang H, Kung C C, Feng N N, Shafiiha R, Fong J, Feng D, Krishnamoorthy A V, Asghari M. Low loss shallow-ridge silicon waveguides. Optics Express, 2010, 18(14): 14474–14479
CrossRef
Pubmed
Google scholar
|
[16] |
Debnath K, Arimoto H, Husain M, Prasmusinto A, Al-Attili A, Petra R, Chong H, Reed G, Saito S. Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique. Frontiers in Materials, 2016, 3, doi: 10.3389/famts.2016.00010
|
[17] |
Pafchek R, Tummidi R, Li J, Webster M A, Chen E, Koch T L. Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation. Applied Optics, 2009, 48(5): 958–963
CrossRef
Pubmed
Google scholar
|
[18] |
Lee K K, Lim D R, Kimerling L C, Shin J, Cerrina F. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Optics Letters, 2001, 26(23): 1888–1890
CrossRef
Pubmed
Google scholar
|
[19] |
Wang P, Michael A, Kwok C Y. Fabrication of sub-micro waveguides with vertical sidewall and reduced roughness for low loss applications. Procedia Engineering, 2014, 87: 979–982
CrossRef
Google scholar
|
[20] |
Taillaert D, Van Laere F, Ayre M, Bogaerts W, Van Thourhout D, Bienstman P, Baets R. Grating couplers for coupling between optical fibers and nanophotonic waveguides. Japanese Journal of Applied Physics, 2006, 45(8A): 6071–6077
CrossRef
Google scholar
|
[21] |
Tang Y, Wang Z, Wosinski L, Westergren U, He S. Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits. Optics Letters, 2010, 35(8): 1290–1292
CrossRef
Pubmed
Google scholar
|
[22] |
Cardenas J, Poitras C B, Luke K, Luo L W, Morton P A, Lipson M. High coupling efficiency etched facet tapers in silicon waveguides. IEEE Photonics Technology Letters, 2014, 26(23): 2380–2382
CrossRef
Google scholar
|
[23] |
Dewanjee A, Caspers J N, Aitchison J S, Mojahedi M. Demonstration of a compact bilayer inverse taper coupler for Si-photonics with enhanced polarization insensitivity. Optics Express, 2016, 24(25): 28194–28203
CrossRef
Pubmed
Google scholar
|
[24] |
Fang Q, Liow T Y, Song J F, Tan C W, Yu M B, Lo G Q, Kwong D L. Suspended optical fiber-to-waveguide mode size converter for silicon photonics. Optics Express, 2010, 18(8): 7763–7769
CrossRef
Pubmed
Google scholar
|
[25] |
Chen L, Doerr C R, Chen Y K, Liow T Y. Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides. IEEE Photonics Technology Letters, 2010, 22(23): 1744–1746
CrossRef
Google scholar
|
[26] |
Wang P, Michael A, Kwok C Y. Cantilever inverse taper coupler with SiO2 gap for submicron silicon waveguides. IEEE Photonics Technology Letters, 2017, 29(16): 1407–1410
CrossRef
Google scholar
|
[27] |
Koelmans W W, Peters T, Berenschot E, de Boer M J, Siekman M H, Abelmann L. Cantilever arrays with self-aligned nanotips of uniform height. Nanotechnology, 2012, 23(13): 135301
CrossRef
Pubmed
Google scholar
|
[28] |
Vermeer R, Berenschot E, Sarajlic E, Tas N, Jansen H. Fabrication of novel AFM probe with high-aspect-ratio ultra-sharp three-face silicon nitride tips. In: Proceedings of 14th IEEE International Conference on Nanotechnology, 2014, 229–233
|
[29] |
Li J D, Xie J, Xue W, Wu D M. Fabrication of cantilever with self-sharpening nano-silicon-tip for AFM applications. Microsystem Technologies, 2013, 19(2): 285–290
CrossRef
Google scholar
|
[30] |
Miyazawa K, Izumi H, Watanabe-Nakayama T, Asakawa H, Fukuma T. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid. Nanotechnology, 2015, 26(10): 105707
CrossRef
Pubmed
Google scholar
|
[31] |
Beard J D, Gordeev S N. Fabrication and buckling dynamics of nanoneedle AFM probes. Nanotechnology, 2011, 22(17): 175303
CrossRef
Pubmed
Google scholar
|
[32] |
Engstrom D S, Savu V, Zhu X, Bu I Y, Milne W I, Brugger J, Boggild P. High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts. Nano Letters, 2011, 11(4): 1568–1574
CrossRef
Pubmed
Google scholar
|
[33] |
Edgeworth J P, Burt D P, Dobson P S, Weaver J M R, Macpherson J V. Growth and morphology control of carbon nanotubes at the apexes of pyramidal silicon tips. Nanotechnology, 2010, 21(10): 105605
CrossRef
Pubmed
Google scholar
|
[34] |
Spindt C A. A thin film field emission cathode. Journal of Applied Physics, 1968, 39(7): 3504–3505
CrossRef
Google scholar
|
[35] |
Itoh S, Watanabe T, Ohtsu K, Taniguchi M, Uzawa S, Nishimura N. Experimental study of field emission properties of the Spindt‐type field emitter. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1995, 13(2): 487–490
CrossRef
Google scholar
|
[36] |
Spindt C A, Holland C E, Schwoebel P R, Brodie I. Field emitter array development for microwave applications. II. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1998, 16(2): 758–761
CrossRef
Google scholar
|
[37] |
Wang P, Michael A, Kwok C Y.High aspect ratio sharp nanotip for nanocantilever integration at CMOS compatible temperature. Nanotechnology, 2017, 28(32): 32T01
|
[38] |
Minne S C, Adams J D, Yaralioglu G, Manalis S R, Atalar A, Quate C F. Centimeter scale atomic force microscope imaging and lithography. Applied Physics Letters, 1998, 73(12): 1742–1744
CrossRef
Google scholar
|
[39] |
Dukic M, Adams J D, Fantner G E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Scientific Reports, 2015, 5(1): 16393
CrossRef
Pubmed
Google scholar
|
[40] |
Li M, Pernice W H P, Tang H X. Broadband all-photonic transduction of nanocantilevers. Nature Nanotechnology, 2009, 4(6): 377–382
CrossRef
Pubmed
Google scholar
|
[41] |
Shoaib M, Hisham N, Basheer N, Tariq M. Frequency and displacement analysis of electrostatic cantilever based MEMS sensor. Analog Integrated Circuits & Signal Processing, 2016, 88(1): 1–11
CrossRef
Google scholar
|
/
〈 | 〉 |