On-chip silicon polarization and mode handling devices
Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU
On-chip silicon polarization and mode handling devices
Mode- and polarization-division multiplexing are new promising options to increase the transmission capacity of optical communications. On-chip silicon polarization and mode handling devices are key components in integrated mode- and polarization-division multiplexed photonic circuits. In this paper, we review our recent progresses on silicon-based polarization beam splitters, polarization splitters and rotators, mode (de)multiplexers, and mode and polarization selective switches. Silicon polarization beam splitters and rotators are demonstrated with high extinction ratio, compact footprint and high fabrication tolerance. For on-chip mode multiplexing, we introduce a low loss and fabrication tolerant three-mode (de)multiplexer employing sub-wavelength grating structure. In analogy to a conventional wavelength selective switch in wavelength-division multiplexing, we demonstrate a selective switch that can route mode- and polarization-multiplexed signals.
silicon photonics / polarization beam splitter / polarization splitter and rotator / mode (de)multiplexer / selective switch
[1] |
Richardson D, Fini J, Nelson L. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362
CrossRef
Google scholar
|
[2] |
Winzer P J. Making spatial multiplexing a reality. Nature Photonics, 2014, 8(5): 345–348
CrossRef
Google scholar
|
[3] |
Ding Y, Kamchevska V, Dalgaard K, Ye F, Asif R, Gross S, Withford M J, Galili M, Morioka T, Oxenløwe L K. Reconfigurable SDM switching using novel silicon photonic integrated circuit. Scientific Reports, 2016, 6(1): 39058
CrossRef
Pubmed
Google scholar
|
[4] |
Bai N, Ip E, Huang Y K, Mateo E, Yaman F, Li M J, Bickham S, Ten S, Liñares J, Montero C, Moreno V, Prieto X, Tse V, Man Chung K, Lau A P T, Tam H Y, Lu C, Luo Y, Peng G D, Li G, Wang T. Mode-division multiplexed transmission with inline few-mode fiber amplifier. Optics Express, 2012, 20(3): 2668–2680
CrossRef
Pubmed
Google scholar
|
[5] |
Ryf R, Randel S, Fontaine N K, Montoliu M, Burrows E, Chandrasekhar S, Gnauck A H, Xie C, Essiambre R J, Winzer P, Delbue R, Pupalaikis P, Sureka A, Sun Y, Gruner-Nielsen L, Jensen R V, Lingle R. 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2013, PDP5A.1
|
[6] |
Thylén L, Wosinski L. Integrated photonics in the 21st century. Photonics Research, 2014, 2(2): 75–81
CrossRef
Google scholar
|
[7] |
Soref R. Silicon photonics: a review of recent literature. Silicon, 2010, 2(1): 1–6
CrossRef
Google scholar
|
[8] |
Gondarenko A, Levy J S, Lipson M. High confinement micron-scale silicon nitride high Q ring resonator. Optics Express, 2009, 17(14): 11366–11370
CrossRef
Pubmed
Google scholar
|
[9] |
Chen P, Zhu Y, Shi Y, Dai D, He S. Fabrication and characterization of suspended SiO2 ridge optical waveguides and the devices. Optics Express, 2012, 20(20): 22531–22536
CrossRef
Pubmed
Google scholar
|
[10] |
Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 2010, 4(7): 477–483
CrossRef
Google scholar
|
[11] |
de Rossi A, Lauritano M, Combrié S, Tran Q V, Husko C. Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity. Physical Review A, 2009, 79(4): 043818
CrossRef
Google scholar
|
[12] |
Wang C, Burek M J, Lin Z, Atikian H A, Venkataraman V, Huang I C, Stark P, Lončar M. Integrated high quality factor lithium niobate microdisk resonators. Optics Express, 2014, 22(25): 30924–30933
CrossRef
Pubmed
Google scholar
|
[13] |
Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, Marris-Morini D, Cassan E, Virot L, Fédéli J M, Hartmann J M, Schmid J H, Xu D X, Boeuf F, O’Brien P, Mashanovich G Z, Nedeljkovic M. Roadmap on silicon photonics. Journal of Optics, 2016, 18(7): 073003
CrossRef
Google scholar
|
[14] |
Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J. Ge-on-Si laser operating at room temperature. Optics Letters, 2010, 35(5): 679–681
CrossRef
Pubmed
Google scholar
|
[15] |
Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D. Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photonics, 2015, 9(2): 88–92
CrossRef
Google scholar
|
[16] |
Zhang Y, Zeng C, Li D, Zhao X, Gao G, Yu J, Xia J. Enhanced light emission from Ge quantum dots in photonic crystal ring resonator. Optics Express, 2014, 22(10): 12248–12254
CrossRef
Pubmed
Google scholar
|
[17] |
Zhang Y, Zeng C, Zhang H, Li D, Gao G, Huang Q, Wang Y, Yu J, Xia J. Single-mode emission from Ge quantum dots in photonic crystal nanobeam cavity. IEEE Photonics Technology Letters, 2015, 27(9): 1026–1029
CrossRef
Google scholar
|
[18] |
Xu H, Xiao X, Li X, Hu Y, Li Z, Chu T, Yu Y, Yu J. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. Optics Express, 2012, 20(14): 15093–15099
CrossRef
Pubmed
Google scholar
|
[19] |
Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, Li X, Chen J. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 2016, 24(9): 9295–9307
CrossRef
Pubmed
Google scholar
|
[20] |
Liu B, Zhang Y, He Y, Jiang X, Peng J, Qiu C, Su Y. Silicon photonic bandpass filter based on apodized subwavelength grating with high suppression ratio and short coupling length. Optics Express, 2017, 25(10): 11359–11364
CrossRef
Pubmed
Google scholar
|
[21] |
Jiang X, Wu J, Yang Y, Pan T, Mao J, Liu B, Liu R, Zhang Y, Qiu C, Tremblay C, Su Y. Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers. Optics Express, 2016, 24(3): 2183–2188
CrossRef
Pubmed
Google scholar
|
[22] |
Jiang X, Yang Y, Zhang H, Peng J, Zhang Y, Qiu C, Su Y. Design and experimental demonstration of a compact silicon photonic interleaver based on an interfering loop with wide spectral range. Journal of Lightwave Technology, 2017, 35(17): 3765–3771
CrossRef
Google scholar
|
[23] |
Zhang Y, Li D, Zeng C, Huang Z, Wang Y, Huang Q, Wu Y, Yu J, Xia J. Silicon optical diode based on cascaded photonic crystal cavities. Optics Letters, 2014, 39(6): 1370–1373
CrossRef
Pubmed
Google scholar
|
[24] |
Chen G, Yu Y, Deng S, Liu L, Zhang X. Bandwidth improvement for germanium photodetector using wire bonding technology. Optics Express, 2015, 23(20): 25700–25706
CrossRef
Pubmed
Google scholar
|
[25] |
Wang J, He S, Dai D. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser & Photonics Reviews, 2014, 8(2): L18–L22
CrossRef
Google scholar
|
[26] |
Dai D, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light, Science & Applications, 2012, 1(3): e1
CrossRef
Google scholar
|
[27] |
Doerr C R, Chen L, Vermeulen D, Nielsen T, Azemati S, Stulz S, McBrien G, Xu X M, Mikkelsen B, Givehchi M, Rasmussen C, Park S Y. Single-chip silicon photonics 100-Gb/s coherent transceiver. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2014, Th5C.1
|
[28] |
Dong P, Liu X, Sethumadhavan C, Buhl L L, Aroca R, Baeyens Y, Chen Y K. 224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2013, PDP5C.6
|
[29] |
Rahman B, Somasiri N, Themistos C, Grattan K. Design of optical polarization splitters in a single-section deeply etched MMI waveguide. Applied Physics B, Lasers and Optics, 2001, 73(5–6): 613–618
CrossRef
Google scholar
|
[30] |
Ding Y, Ou H, Peucheret C. Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Optics Letters, 2013, 38(8): 1227–1229
CrossRef
Pubmed
Google scholar
|
[31] |
Ao X, Liu L, Wosinski L, He S. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type. Applied Physics Letters, 2006, 89(17): 171115
CrossRef
Google scholar
|
[32] |
Feng J, Zhou Z. Polarization beam splitter using a binary blazed grating coupler. Optics Letters, 2007, 32(12): 1662–1664
CrossRef
Pubmed
Google scholar
|
[33] |
Chu H S, Li E P, Bai P, Hegde R. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Applied Physics Letters, 2010, 96(22): 221103
CrossRef
Google scholar
|
[34] |
Guan X, Wu H, Shi Y, Dai D. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Optics Letters, 2014, 39(2): 259–262
CrossRef
Pubmed
Google scholar
|
[35] |
Fukuda H, Yamada K, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi S. Ultrasmall polarization splitter based on silicon wire waveguides. Optics Express, 2006, 14(25): 12401–12408
CrossRef
Pubmed
Google scholar
|
[36] |
Dai D, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Optics Express, 2011, 19(19): 18614–18620
CrossRef
Pubmed
Google scholar
|
[37] |
Zhang Y, He Y, Wu J, Jiang X, Liu R, Qiu C, Jiang X, Yang J, Tremblay C, Su Y. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations. Optics Express, 2016, 24(6): 6586–6593
CrossRef
Pubmed
Google scholar
|
[38] |
Kim D W, Lee M H, Kim Y, Kim K H. Planar-type polarization beam splitter based on a bridged silicon waveguide coupler. Optics Express, 2015, 23(2): 998–1004
CrossRef
Pubmed
Google scholar
|
[39] |
Qiu H, Su Y, Yu P, Hu T, Yang J, Jiang X. Compact polarization splitter based on silicon grating-assisted couplers. Optics Letters, 2015, 40(9): 1885–1887
CrossRef
Pubmed
Google scholar
|
[40] |
Zhang Y, He Y, Jiang X, Liu B, Qiu C, Su Y. Ultra-compact broadband silicon polarization beam splitter based on a bridged bent directional coupler. In: Proceedings of IEEE 13th International Conference on Group IV Photonics (GFP). IEEE Photonics Society, 2016, ThP18
|
[41] |
Liu L, Ding Y, Yvind K, Hvam J M. Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process. Optics Letters, 2011, 36(7): 1059–1061
CrossRef
Pubmed
Google scholar
|
[42] |
Liu L, Ding Y, Yvind K, Hvam J M. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Optics Express, 2011, 19(13): 12646–12651
CrossRef
Pubmed
Google scholar
|
[43] |
Tan K, Huang Y, Lo G Q, Yu C, Lee C. Ultra-broadband fabrication-tolerant polarization splitter and rotator. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, Th1G.7
|
[44] |
Wang J, Niu B, Sheng Z, Wu A, Li W, Wang X, Zou S, Qi M, Gan F. Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction. Optics Express, 2014, 22(11): 13565–13571
CrossRef
Pubmed
Google scholar
|
[45] |
Zhang Y, He Y, Jiang X, Liu B, Qiu C, Su Y, Soref R A. Ultra-compact and highly efficient silicon polarization splitter and rotator. APL Photonics, 2016, 1(9): 091304
CrossRef
Google scholar
|
[46] |
He Y, Zhang Y, Wang X, Liu B, Jiang X, Qiu C, Su Y, Soref R. Silicon polarization splitter and rotator using a subwavelength grating based directional coupler. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, Th1G.6
|
[47] |
Ding Y, Liu L, Peucheret C, Ou H. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Optics Express, 2012, 20(18): 20021–20027
CrossRef
Pubmed
Google scholar
|
[48] |
Xiong Y, Xu D X, Schmid J H, Cheben P, Janz S, Ye W N. Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler. Optics Express, 2014, 22(14): 17458–17465
CrossRef
Pubmed
Google scholar
|
[49] |
Halir R, Bock P J, Cheben P, Ortega-Moñux A, Alonso-Ramos C, Schmid J H, Lapointe J, Xu D X, Wangüemert‐Pérez J G, Molina-Fernández Í, Janz S. Waveguide sub-wavelength structures: a review of principles and applications. Laser & Photonics Reviews, 2015, 9(1): 25–49
CrossRef
Google scholar
|
[50] |
Xing J, Li Z, Xiao X, Yu J, Yu Y. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Optics Letters, 2013, 38(17): 3468–3470
CrossRef
Pubmed
Google scholar
|
[51] |
Riesen N, Love J D. Design of mode-sorting asymmetric Y-junctions. Applied Optics, 2012, 51(15): 2778–2783
CrossRef
Pubmed
Google scholar
|
[52] |
Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Optics Letters, 2013, 38(9): 1422–1424
CrossRef
Pubmed
Google scholar
|
[53] |
Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M. WDM-compatible mode-division multiplexing on a silicon chip. Nature Communications, 2014, 5: 3069
Pubmed
|
[54] |
He Y, Zhang Y, Jiang X, Qiu C, Su Y. On-chip silicon three-mode (de)multiplexer employing subwavelength grating structure. In: Proceedings of 43nd European Conference on Optical Communication . ECOC, 2017, W2C.3
|
[55] |
Doerr C R, Buhl L, Chen L, Dupuis N. Monolithic gridless 1 ´ 2 wavelength-selective switch in silicon. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2011, PDPC4
|
[56] |
Stern B, Zhu X, Chen C P, Tzuang L D, Cardenas J, Bergman K, Lipson M. On-chip mode-division multiplexing switch. Optica, 2015, 2(6): 530–535
CrossRef
Google scholar
|
[57] |
Zhang Y, Zhu Q, He Y, Qiu C, Su Y, Soref R. Silicon 1 × 2 mode- and polarization-selective switch. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, W4E.2
|
[58] |
Winzer P, Gnauck A, Konczykowska A, Jorge F, Dupuy J Y. Penalties from in-band crosstalk for advanced optical modulation formats. In: Proceedings of 37th European Conference and Exposition on Optical Communications. ECOC, 2011, Tu.5.B.7
|
[59] |
Ding Y, Xu J, Da Ros F, Huang B, Ou H, Peucheret C. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Optics Express, 2013, 21(8): 10376–10382
CrossRef
Pubmed
Google scholar
|
[60] |
Downie J D, Ruffin A B. Analysis of signal distortion and crosstalk penalties induced by optical filters in optical networks. Journal of Lightwave Technology, 2003, 21(9): 1876–1886
CrossRef
Google scholar
|
[61] |
Poon A W, Luo X, Xu F, Chen H. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proceedings of the IEEE, 2009, 97(7): 1216–1238
CrossRef
Google scholar
|
[62] |
Zhang Y, He Y, Zhu Q, Qiu C, Su Y. On-chip silicon photonic 2×2 mode- and polarization-selective switch with low inter-modal crosstalk. Photonics Research, 2017, 5(5): 521–526
CrossRef
Google scholar
|
[63] |
Fang Q, Song J F, Liow T Y, Cai H, Yu M B, Lo G Q, Kwong D L. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technology Letters, 2011, 23(8): 525–527
CrossRef
Google scholar
|
[64] |
Zhu Q M, Zhang Y, He Y, An S H, Qiu C Y, Guo X H, Su Y K. On-chip switching of mode- and polarization-multiplexed signals with a 748-Gb/s/λ (8×93.5-Gb/s) capacity. In: Proceedings of CLEO, 2018, accepted
|
/
〈 | 〉 |