Dipole-fiber system: from single photon source to metadevices
Shaghik ATAKARAMIANS, Tanya M. MONRO, Shahraam AFSHAR V.
Dipole-fiber system: from single photon source to metadevices
Radiation of an electric dipole (quantum emitter) in vicinity of optical structures still attracts great interest due to emerging of novel application and technological advances. Here we review our recent work on guided and radiation modes of electric dipole and optical fiber system and its applications from single photon source to metadevices. We demonstrate that the relative position and orientation of the dipole and the core diameter of the optical fiber are the two key defining factors of the coupled system application. We demonstrate that such a coupled system has a vast span of applications in nanophotonics; a single photon source, a high-quality factor sensor and the building block of metadevices.
dipole source / optical fibers / single photon source / whispering gallery modes / electric and magnetic response
[1] |
Vahala K JOptical microcavities. Nature, 2003, 424(6950): 839–846
CrossRef
Pubmed
Google scholar
|
[2] |
Afshar V S, Henderson M R, Greentree A D, Gibson B C, Monro T MSelf-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems. Optics Express, 2014, 22(9): 11301–11311
CrossRef
Pubmed
Google scholar
|
[3] |
Hall J M M, Reynolds T, Henderson M R, Riesen N, Monro T M, Afshar S.Unified theory of whispering gallery multilayer microspheres with single dipole or active layer sources. Optics Express, 2017, 25(6): 6192–6214
CrossRef
Pubmed
Google scholar
|
[4] |
Chew H, McNulty P J, Kerker M. Model for Raman and fluorescent scattering by molecules embedded in small particles. Physical Review A, 1976, 13(1): 396–404
CrossRef
Google scholar
|
[5] |
Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F. Shift of whispering-gallery modes in microspheres by protein adsorption. Optics Letters, 2003, 28(4): 272–274
CrossRef
Pubmed
Google scholar
|
[6] |
Quan H, Guo Z. Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 93(1-3): 231–243
CrossRef
Google scholar
|
[7] |
Guo Z, Quan H, Pau S. Near-field gap effects on small microcavity whispering-gallery mode resonators. Journal of Physics D, Applied Physics, 2006, 39(24): 5133–5136
CrossRef
Google scholar
|
[8] |
Imakita K, Shibata H, Fujii M, Hayashi S. Numerical analysis on the feasibility of a multi-layered dielectric sphere as a three-dimensional photonic crystal. Optics Express, 2013, 21(9): 10651–10658
CrossRef
Pubmed
Google scholar
|
[9] |
Li M, Wu X, Liu L, Xu L. Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators. Optics Express, 2013, 21(14): 16908–16913
CrossRef
Pubmed
Google scholar
|
[10] |
Farnesi D, Barucci A, Righini G C, Conti G N, Soria S. Generation of hyper-parametric oscillations in silica microbubbles. Optics Letters, 2015, 40(19): 4508–4511
CrossRef
Pubmed
Google scholar
|
[11] |
Ruan Z, Fan S. Superscattering of light from subwavelength nanostructures. Physical Review Letters, 2010, 105(1): 013901
CrossRef
Pubmed
Google scholar
|
[12] |
Agio M. Optical antennas as nanoscale resonators. Nanoscale, 2012, 4(3): 692–706
CrossRef
Pubmed
Google scholar
|
[13] |
Novotny L, van Hulst N. Antennas for light. Nature Photonics, 2011, 5(2): 83–90
CrossRef
Google scholar
|
[14] |
Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, 1(3): 438–483
CrossRef
Google scholar
|
[15] |
Kivshar Y, Miroshnichenko A. Meta-optics with Mie resonances. Optics and Photonics News, 2017, 28(1): 24–31
CrossRef
Google scholar
|
[16] |
Zheludev N I, Kivshar Y S. From metamaterials to metadevices. Nature Materials, 2012, 11(11): 917–924
CrossRef
Pubmed
Google scholar
|
[17] |
Snyder A W, Love J. Optical Waveguide Theory. 1st ed. London: Chapman and Hall Ltd, 1983
|
[18] |
Henderson M R, Afshar V. S, Greentree A D, Monro T M. Dipole emitters in fiber: interface effects, collection efficiency and optimization. Optics Express, 2011, 19(17): 16182–16194
CrossRef
Pubmed
Google scholar
|
[19] |
Henderson M R, Gibson B C, Ebendorff-Heidepriem H, Kuan K, Afshar V S, Orwa J O, Aharonovich I, Tomljenovic-Hanic S, Greentree A D, Prawer S, Monro T M. Diamond in tellurite glass: a new medium for quantum information. Advanced Materials, 2011, 23(25): 2806–2810
CrossRef
Pubmed
Google scholar
|
[20] |
Ebendorff-Heidepriem H, Ruan Y, Ji H, Greentree A D, Gibson B C, Monro T M. Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass. Optical Materials Express, 2014, 4(12): 2608–2620
CrossRef
Google scholar
|
[21] |
Ruan Y, Ji H, Johnson B C, Ohshima T, Greentree A D, Gibson B C, Monro T M, Ebendorff-Heidepriem H. Nanodiamond in tellurite glass Part II: practical nanodiamond-doped fibers. Optical Materials Express, 2015, 5(1): 73–87
CrossRef
Google scholar
|
[22] |
Atakaramians S, Miroshnichenko A E, Shadrivov I V, Mirzaei A, Monro T M. Kivshar Y S, Afshar V S. Strong magnetic response of optical nanofibers. ACS Photonics, 2016, 3(6): 972–978
CrossRef
Google scholar
|
[23] |
Atakaramians S, Miroshnichenko A E, Shadrivov I V, Monro T M. Kivshar Y S, Afshar V. S. Dipole-fiber systems: radiation field patterns, effective magnetic dipoles, and induced cavity modes. In: Proceedings of SPIE 9668, Micro+Nano Materials, Devices, and Systems, 2015, 96683J
CrossRef
Google scholar
|
[24] |
Fussell D P, McPhedran R C, Martijn de Sterke C. Decay rate and level shift in a circular dielectric waveguide. Physical Review A, 2005, 71(1): 013815
CrossRef
Google scholar
|
[25] |
Jackson J. Classical Electrodynamics. 3rd ed. New York: John Wiley & Sons, Inc., 1998
|
[26] |
Grahn P, Shevchenko A, Kaivola M. Electromagnetic multipole theory for optical nanomaterials. New Journal of Physics, 2012, 14(9): 093033
CrossRef
Google scholar
|
/
〈 | 〉 |