Dipole-fiber system: from single photon source to metadevices

Shaghik ATAKARAMIANS, Tanya M. MONRO, Shahraam AFSHAR V.

PDF(308 KB)
PDF(308 KB)
Front. Optoelectron. ›› 2018, Vol. 11 ›› Issue (1) : 30-36. DOI: 10.1007/s12200-018-0762-8
REVIEW ARTICLE
REVIEW ARTICLE

Dipole-fiber system: from single photon source to metadevices

Author information +
History +

Abstract

Radiation of an electric dipole (quantum emitter) in vicinity of optical structures still attracts great interest due to emerging of novel application and technological advances. Here we review our recent work on guided and radiation modes of electric dipole and optical fiber system and its applications from single photon source to metadevices. We demonstrate that the relative position and orientation of the dipole and the core diameter of the optical fiber are the two key defining factors of the coupled system application. We demonstrate that such a coupled system has a vast span of applications in nanophotonics; a single photon source, a high-quality factor sensor and the building block of metadevices.

Keywords

dipole source / optical fibers / single photon source / whispering gallery modes / electric and magnetic response

Cite this article

Download citation ▾
Shaghik ATAKARAMIANS, Tanya M. MONRO, Shahraam AFSHAR V.. Dipole-fiber system: from single photon source to metadevices. Front. Optoelectron., 2018, 11(1): 30‒36 https://doi.org/10.1007/s12200-018-0762-8

References

[1]
Vahala K JOptical microcavities. Nature, 2003, 424(6950): 839–846
CrossRef Pubmed Google scholar
[2]
Afshar V S, Henderson M R, Greentree A D, Gibson B C, Monro T MSelf-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems. Optics Express, 2014, 22(9): 11301–11311
CrossRef Pubmed Google scholar
[3]
Hall J M M, Reynolds T, Henderson M R, Riesen N, Monro T M, Afshar S.Unified theory of whispering gallery multilayer microspheres with single dipole or active layer sources. Optics Express, 2017, 25(6): 6192–6214
CrossRef Pubmed Google scholar
[4]
Chew H, McNulty P J, Kerker M. Model for Raman and fluorescent scattering by molecules embedded in small particles. Physical Review A, 1976, 13(1): 396–404
CrossRef Google scholar
[5]
Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F. Shift of whispering-gallery modes in microspheres by protein adsorption. Optics Letters, 2003, 28(4): 272–274
CrossRef Pubmed Google scholar
[6]
Quan H, Guo Z. Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 93(1-3): 231–243
CrossRef Google scholar
[7]
Guo Z, Quan H, Pau S. Near-field gap effects on small microcavity whispering-gallery mode resonators. Journal of Physics D, Applied Physics, 2006, 39(24): 5133–5136
CrossRef Google scholar
[8]
Imakita K, Shibata H, Fujii M, Hayashi S. Numerical analysis on the feasibility of a multi-layered dielectric sphere as a three-dimensional photonic crystal. Optics Express, 2013, 21(9): 10651–10658
CrossRef Pubmed Google scholar
[9]
Li M, Wu X, Liu L, Xu L. Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators. Optics Express, 2013, 21(14): 16908–16913
CrossRef Pubmed Google scholar
[10]
Farnesi D, Barucci A, Righini G C, Conti G N, Soria S. Generation of hyper-parametric oscillations in silica microbubbles. Optics Letters, 2015, 40(19): 4508–4511
CrossRef Pubmed Google scholar
[11]
Ruan Z, Fan S. Superscattering of light from subwavelength nanostructures. Physical Review Letters, 2010, 105(1): 013901
CrossRef Pubmed Google scholar
[12]
Agio M. Optical antennas as nanoscale resonators. Nanoscale, 2012, 4(3): 692–706
CrossRef Pubmed Google scholar
[13]
Novotny L, van Hulst N. Antennas for light. Nature Photonics, 2011, 5(2): 83–90
CrossRef Google scholar
[14]
Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, 1(3): 438–483
CrossRef Google scholar
[15]
Kivshar Y, Miroshnichenko A. Meta-optics with Mie resonances. Optics and Photonics News, 2017, 28(1): 24–31
CrossRef Google scholar
[16]
Zheludev N I, Kivshar Y S. From metamaterials to metadevices. Nature Materials, 2012, 11(11): 917–924
CrossRef Pubmed Google scholar
[17]
Snyder A W, Love J. Optical Waveguide Theory. 1st ed. London: Chapman and Hall Ltd, 1983
[18]
Henderson M R, Afshar V. S, Greentree A D, Monro T M. Dipole emitters in fiber: interface effects, collection efficiency and optimization. Optics Express, 2011, 19(17): 16182–16194
CrossRef Pubmed Google scholar
[19]
Henderson M R, Gibson B C, Ebendorff-Heidepriem H, Kuan K, Afshar V S, Orwa J O, Aharonovich I, Tomljenovic-Hanic S, Greentree A D, Prawer S, Monro T M. Diamond in tellurite glass: a new medium for quantum information. Advanced Materials, 2011, 23(25): 2806–2810
CrossRef Pubmed Google scholar
[20]
Ebendorff-Heidepriem H, Ruan Y, Ji H, Greentree A D, Gibson B C, Monro T M. Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass. Optical Materials Express, 2014, 4(12): 2608–2620
CrossRef Google scholar
[21]
Ruan Y, Ji H, Johnson B C, Ohshima T, Greentree A D, Gibson B C, Monro T M, Ebendorff-Heidepriem H. Nanodiamond in tellurite glass Part II: practical nanodiamond-doped fibers. Optical Materials Express, 2015, 5(1): 73–87
CrossRef Google scholar
[22]
Atakaramians S, Miroshnichenko A E, Shadrivov I V, Mirzaei A, Monro T M. Kivshar Y S, Afshar V S. Strong magnetic response of optical nanofibers. ACS Photonics, 2016, 3(6): 972–978
CrossRef Google scholar
[23]
Atakaramians S, Miroshnichenko A E, Shadrivov I V, Monro T M. Kivshar Y S, Afshar V. S. Dipole-fiber systems: radiation field patterns, effective magnetic dipoles, and induced cavity modes. In: Proceedings of SPIE 9668, Micro+Nano Materials, Devices, and Systems, 2015, 96683J
CrossRef Google scholar
[24]
Fussell D P, McPhedran R C, Martijn de Sterke C. Decay rate and level shift in a circular dielectric waveguide. Physical Review A, 2005, 71(1): 013815
CrossRef Google scholar
[25]
Jackson J. Classical Electrodynamics. 3rd ed. New York: John Wiley & Sons, Inc., 1998
[26]
Grahn P, Shevchenko A, Kaivola M. Electromagnetic multipole theory for optical nanomaterials. New Journal of Physics, 2012, 14(9): 093033
CrossRef Google scholar

Acknowledgement

S. Atakaramians acknowledges the support of Australian Research Council (ARC) under the Discovery Early Career Project Award number DE140100614. T. M. Monro acknowledges the support of ARC Georgina Sweet Laureate Fellowship.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(308 KB)

Accesses

Citations

Detail

Sections
Recommended

/