Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions

Sergey SAVENKOV, Alexander V. PRIEZZHEV, Yevgen OBEREMOK, Sergey SHOLOM, Ivan KOLOMIETS

PDF(485 KB)
PDF(485 KB)
Front. Optoelectron. ›› 2017, Vol. 10 ›› Issue (3) : 308-316. DOI: 10.1007/s12200-017-0727-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions

Author information +
History +

Abstract

Mueller matrices were measured for natural (or reference) samples of human nails and samples irradiated by a 2 Gy ionizing radiation dose. The elements of the total Mueller matrix as a function of scattering angle were measured in backscattering mode at a wavelength of 632.8 nm. Several types of depolarizing Mueller matrix decompositions, namely, Ossikovsky, Williams, and Chipman, were calculated as a function of scattering angle for each nail sample. A comparative analysis of the sensitivity of the Mueller matrix decompositions in relation to the problem of emergency dose assessment in nails was performed.

Keywords

Mueller matrix / depolarization / human nails / ionizing radiation dose / scattering

Cite this article

Download citation ▾
Sergey SAVENKOV, Alexander V. PRIEZZHEV, Yevgen OBEREMOK, Sergey SHOLOM, Ivan KOLOMIETS. Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions. Front. Optoelectron., 2017, 10(3): 308‒316 https://doi.org/10.1007/s12200-017-0727-3

References

[1]
McKeever S W S, Sholom S. Biodosimetry versus physical dosimetry for emergency dose assessment following large-scale radiological exposures. Radiation Measurements, 2016, 92: 8–18 doi:10.1016/j.radmeas.2016.06.003
[2]
Bailiff I K, Sholom S, McKeever S W S. Retrospective and emergency dosimetry in response to radiologic alincidents and nuclear mass-casualty events, a review. Radiation Measurements, 2016, 94: 83–139
CrossRef Google scholar
[3]
Ainsbury E, Badie C, Barnard S, Manning G, Moquet J, Abend M, Antunes A C, Barrios L, Bassinet C, Beinke C, Bortolin E, Bossin L, Bricknell C, Brzoska K, Buraczewska I, Castaño C H, Čemusová Z, Christiansson M, Cordero S M, Cosler G, Monaca S D, Desangles F, Discher M, Dominguez I, Doucha-Senf S, Eakins J, Fattibene P, Filippi S, Frenzel M, Georgieva D, Gregoire E, Guogyte K, Hadjidekova V, Hadjiiska L, Hristova R, Karakosta M, Kis E, Kriehuber R, Lee J, Lloyd D, Lumniczky K, Lyng F, Macaeva E, Majewski M, Vanda Martins S, McKeever S W, Meade A, Medipally D, Meschini R, M’kacher R, Gil O M, Montero A, Moreno M, Noditi M, Oestreicher U, Oskamp D, Palitti F, Palma V, Pantelias G, Pateux J, Patrono C, Pepe G, Port M, Prieto M J, Quattrini M C, Quintens R, Ricoul M, Roy L, Sabatier L, Sebastià N, Sholom S, Sommer S, Staynova A, Strunz S, Terzoudi G, Testa A, Trompier F, Valente M, Hoey O V, Veronese I, Wojcik A, Woda C. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans- joint RENEB and EURADOS inter-laboratory comparisons. International Journal of Radiation Biology, 2017, 93(1): 99–109
CrossRef Pubmed Google scholar
[4]
Bassinet C, Woda C, Bortolin E, Della Monaca S, Fattibene P, Quattrini M S, Bulanek B, Ekendahl D, Burbidge C, Cauwels V, Kouroukla E, Geber-Bergstrand T, Piasjkowski A, Marczewska B, Bilksi P, Sholom S, McKeever S W S, Smith R, Veronese I, Gallim A, Panzeri L, Martini M. Retrospective radiation dosimetry using OSL from electronic components: results of an inter-laboratory comparison. Radiation Measurements, 2014, 71: 475–479
CrossRef Google scholar
[5]
Sholom S, McKeever S W S. Emergency OSL/TL dosimetry with integrated circuits from mobile phones. In: Proceedings of SPIE Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI, 921319. San Diego, California, United States, 2014, 921319
[6]
Sholom S, McKeever S W S. Integrated circuits from mobile phones as possible emergency OSL/TL dosimeters. Radiation Protection Dosimetry, 2016, 170(1-4): 398–401
CrossRef Pubmed Google scholar
[7]
Discher M, Woda C, Fiedler I. Improvement of dose determination using glass display of mobile phones for accident dosimetry. Radiation Measurements, 2013, 56: 240–243
CrossRef Google scholar
[8]
Discher M, Bortolin E, Woda C. Investigations of touchscreen glasses from mobile phones for retrospective and accident dosimetry. Radiation Measurements, 2016, 89: 44–51
CrossRef Google scholar
[9]
Pascu A, Vasiliniuc S, Zeciu-Dolha M, Timar-Gabor A. The potential of luminescence signals from electronic components for accident dosimetry. Radiation Measurements, 2013, 56: 384–388
CrossRef Google scholar
[10]
Sholom S, Dewitt R, Simon S L, Bouville A, McKeever S W S. Emergency dose estimation using optically stimulated luminescence from human tooth enamel. Radiation Measurements, 2011, 46(9): 778–782
CrossRef Pubmed Google scholar
[11]
Sholom S, Dewitt R, Simon S, Bouville A, McKeever S. Emergency optically stimulated luminescence dosimetry using different materials. Radiation Measurements, 2011, 46(12): 1866–1869
CrossRef Pubmed Google scholar
[12]
Sholom S, Desrosiers M. EPR and OSL emergency dosimetry with teeth: a direct comparison of two techniques. Radiation Measurements, 2014, 71: 494–497
CrossRef Google scholar
[13]
Williams B B, Flood A B, Salikhov I, Kobayashi K, Dong R, Rychert K, Du G, Schreiber W, Swartz H M. In vivo EPR tooth dosimetry for triage after a radiation event involving large populations. Radiation and Environmental Biophysics, 2014, 53(2): 335–346
CrossRef Pubmed Google scholar
[14]
Tipikin D S, Swarts S G, Sidabras J W, Trompier F, Swartz H M. Possible nature of the stable radiation-induced signal in nails: high-field EPR, confirming chemical synthesis, quantum chemical calculations. Radiation Protection Dosimetry, 2016, 172(1-3): 112–120
CrossRef Pubmed Google scholar
[15]
Marciniak A, Ciesielski B. EPR dosimetry in nails – a review. Applied Spectroscopy Reviews, 2016, 51(1): 73–92
CrossRef Google scholar
[16]
Savenkov S, Priezzhev A, Oberemok Y, Sholom S, Kolomiets I, Chunikhina K. Characterization of natural and irradiated nails by means of the depolarization metrics. Journal of Biomedical Optics, 2016, 21(7): 071108
CrossRef Pubmed Google scholar
[17]
Gil J J, Bernabeu E. A depolarization criterion in Mueller matrices. Optica Acta, 1985, 32(3): 259–261 
CrossRef Google scholar
[18]
Gil J J, Bernabeu E. Depolarization and polarization indexes of an optical system. Optica Acta, 1986, 33(2): 185–189
CrossRef Google scholar
[19]
Espinosa-Luna R, Bernabeu E. On the Q(M) depolarization metric. Optics Communications, 2007, 277(2): 256–258 
CrossRef Google scholar
[20]
Ossikovski R. Alternative depolarization criteria for Mueller matrices. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2010, 27(4): 808–814
CrossRef Pubmed Google scholar
[21]
Cloude S R, Pottier E. Concept of polarization entropy in optical scattering. Optical Engineering (Redondo Beach, Calif.), 1995, 34(6): 1599–1610
CrossRef Google scholar
[22]
Cloude S R. Group theory and polarization algebra. Optik (Stuttgart), 1986, 7: 26–36
[23]
Savenkov S N, Muttiah R S, Oberemok Y A. Transmitted and reflected scattering matrices from an English oak leaf. Applied Optics, 2003, 42(24): 4955–4962
CrossRef Pubmed Google scholar
[24]
Savenkov S N, Mishchenko L T, Muttiah R S, Oberemok Y A, Mishchenko I A. Mueller polarimetry of virus-infected and healthy wheat under field and microgravity conditions. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 88(1-3): 327–343
CrossRef Google scholar
[25]
Savenkov S N, Grygoruk V I, Muttiah R S, Yushtin K E, Oberemok Ye A, Yakubchak V V. Effective dichroism in forward scattering by inhomogeneous birefringent medium. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(1-2): 30–42
CrossRef Google scholar
[26]
Ossikovski R. Analysis of depolarizing Mueller matrices through a symmetric decomposition. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2009, 26(5): 1109–1118
CrossRef Pubmed Google scholar
[27]
Williams M W. Depolarization and cross polarization in ellipsometry of rough surfaces. Applied Optics, 1986, 25(20): 3616–3622
CrossRef Pubmed Google scholar
[28]
Lu S Y, Chipman R A. Interpretation of Mueller matrices based on polar decomposition. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1996, 13(5): 1106–1113
CrossRef Google scholar
[29]
Savenkov S N. Optimization and structuring of the instrument matrix for polarimetric measurements. Optical Engineering (Redondo Beach, Calif.), 2002, 41(5): 965–972
CrossRef Google scholar
[30]
Gil J J, San José I. Reduced form of a Mueller matrix  Journal of Modern Optics, 2016, 63(16): 1579–1583
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(485 KB)

Accesses

Citations

Detail

Sections
Recommended

/