
Review of current methods of acousto-optical tomography for biomedical applications
Jacqueline GUNTHER, Stefan ANDERSSON-ENGELS
Front. Optoelectron. ›› 2017, Vol. 10 ›› Issue (3) : 211-238.
Review of current methods of acousto-optical tomography for biomedical applications
The field of acousto-optical tomography (AOT) for medical applications began in the 1990s and has since developed multiple techniques for the detection of ultrasound-modulated light. Light becomes frequency shifted as it travels through an ultrasound beam. This “tagged” light can be detected and used for focused optical imaging. Here, we present a comprehensive overview of the techniques that have developed since around 2011 in the field of biomedical AOT. This includes how AOT has advanced by taken advantage of the research conducted in the ultrasound, as well as, the optical fields. Also, simulations and reconstruction algorithms have been formulated specifically for AOT imaging over this time period. Future progression of AOT relies on its ability to provide significant contributions to in vivoimaging for biomedical applications. We outline the challenges that AOT still faces to make in vivoimaging possible and what has been accomplished thus far, as well as possible future directions.
acousto-optic / ultrasound modulation / optical imaging / biomedical imaging
Fig.1 (a) Mock speckle pattern generated to demonstrate signal with the ultrasound perturbation off. (b) A mock speckle pattern with the ultrasound perturbation on. (c) Example of frequency spectrum of output signal from light tagging in which there is the optical frequency (n0) and the side-bands shifted±the ultrasound frequency (na) |
Fig.2 Two coherent mechanisms that contribute to phase change in ultrasound modulated light. (a) Phase change due to the displacement of scatterers in which light scatters off of moving particles within the ultrasound beam and causes a change in direction. Inset shows scattering displacement of an ultrasound wave with amplitude A. (b) Refraction of light between two scattering events due to changes in index of refraction. Inset shows Dn along the ultrasound axis. (c) The third mechanism involving incoherent light propagation. The ultrasound perturbation causes a change in the density of the medium, which causes a change in the optical properties |
Fig.4 Using Eqs. (5) and (6), from the analytical model in which A = 0.1 nm, va = 1480 m/s, r = 1000 kg/m3, dn/dp = 1.466E−10 m2/N, n0 = 1.33, l = 500 nm, ms = 10 cm−1, L = 5 cm, and ka = 10000 m−1. Parameters were taken from Refs. [8,20]. (a) An example of the autocorrelation function (G). (b) Fourier transform of G with one of the peaks corresponding to the acoustic frequency fa0. (c) Example of In(nw) as a function of n (integer) in which the modulation depth in the example is M≈0.004. (d) Modulation depth with respect to ka with only the displacement component (Md), only the index of refraction component (Mn), and both components (Msum) considered. Modulation depth was calculated analytically and recreated from Refs. [12,20] |
Tab.1 Summarization of AOT approaches and impact |
area | technique | approaches | challenge(s) addressed | Ref. |
---|---|---|---|---|
ultrasound | dual ultrasound frequencies | two ultrasound foci | speed | [41] |
two-region transducer | determine Young’s modulus | [42–44] | ||
two ultrasound transducers | axial resolution | [45] | ||
pressure contrast | different pressure waves | determine scattering coefficient | [46,47] | |
second harmonic | ultrasound pulse sequences | resolution and SNR | [48–50] | |
planar waves | combined with image reconstruction | speed | [51] | |
HIFU | combined AOT and HIFU | monitoring HIFU | [47,52] | |
microbubbles | TRUME; pulsed laser speckle contrast detection; fluorescent microbubbles | resolution and contrast | [53–55] | |
acoustic radiation force | laser-speckle contrast analysis | track shear waves and estimate mechanical properties | [36,56–60] | |
optical | speckle contrast and modulation depth measurements | parallel speckle detection; speckle contrast; nanosecond laser pulses | obtaining modulated light measurements from speckle pattern | [61–65] |
incoherent light sources | LED light source; imaging chemiluminescent source; bioluminescence numerical model; fluorescent objects | observation of incoherent ultrasound modulated light | [21–23,66] | |
interferometry and heterodyne holography | CMOS smart pixel array and FT-AOI; lock-in camera | amplification of unmodulated light signal without background amplification | [67–69] | |
photorefractive crystal based detection | Sn2P2S6:Te crystal; ND:YVO4 crystal; Bi12SiO20 crystal; high numeric aperture fiber bundle; photorefractive polymer | detection of modulated or unmodulated light signal | [15,16,70–74] | |
phase conjugation with photorefractive crystals and polymers | TRUE with Bi12SiO20 crystal, photorefractive polymer, or Sn2P2S6:Te crystal, SLM | focus phase conjugated beam within a medium | [18,75–80] | |
focused fluorescent excitation | TRUE; combining SLM-based illumination and PRC-based detection; digital phase conjugation; TROVE light; iTRUE | fluorescent imaging beyond the ballistic regime (~1 mm) | [81–88] | |
quantum memory techniques | spectral hole burning; atomic frequency comb | filter sidebands of signal spectrum | [14,89–92] | |
misc. | acousto-optical coherence tomography | continuously applied light and ultrasound with random phase jumps | resolution and SNR | [93–96] |
combined with PAT | assist AOT:PAT guided ultrasound wavefront shaping | compensate for speed of sound aberrations | [97] | |
assist PAT:measuring fluence with AOT | compensate for fluence variations in PAT signal | [19,98,99] | ||
commercial | acquire dynamic blood flow measurements | clinical trials in humans | [100–102] |
Fig.5 Examples of concepts and generic configurations of the ultrasound portion of AOT. (a) Example of two frequencies (n1 and n2) forming a beat frequency (nb) with period Tb. (b) An ultrasound focus caused by two ultrasound transducers (UST) with beat frequency nb. (c) AOT configuration with two ultrasound (US) pulses of different pressure. (d) Pulse sequencing with inverted ultrasound pulses. (e) Planar wave imaging where the laser input is in the x-direction, ultrasound is propagating in the negative y-direction, and then the ultrasound is swept in the z-direction. (f) High intensity focused ultrasound (HIFU) used to create a lesion in the medium. (g) Imaging with microbubbles (MB) in which the microbubbles are destroyed with ultrasound which causes a change in the electric field that is detected. (h) An example of acoustic radiation force (ARF) imaging. Ultrasound propagation is in the z-direction. A shear wave propagates perpendicular (y-direction) to the ultrasound propagation. Laser light is illuminated through the shear wave (x-direction) |
Fig.6 Generic examples of optical configurations that have been utilized or developed. Each setup consist of laser illumination that travels through a sample that undergoes ultrasound perturbation. (a) Speckle imaging. (b) Heterodyne digital holography, which can be configured with an acousto-optic modulator so that the reference beam matches the tagged or untagged photons (untagged shown). (c) Photorefractive crystal based interferometry. (d) Phase conjugation with photorefractive crystals (PRC). (e) Phase conjugations with spatial light modulator (SLM). The signal from the sample is detected with detector array, which is processed with the PC, and displayed on the spatial light modulator. The reference beam reflects off the SLM and back into the sample where it is refocused into the ultrasound focus and detected. (f) Fluorescent imaging. Ultrasound propagation is in the z-direction. The light is illuminated through the ultrasound focus and the sample. The light is phase conjugated back and then detected. Detector can be placed on a different surface of the sample. (g) Spectral hole burning in a rare-earth crystal (REC). The crystal is first burned with a reference beam that had been tuned to the tagged photon frequency. Then the signal is transmitted through the sample and the tagged photons that pass through the REC are detected. (h) Acoustic optical coherence tomography. The ultrasound signal undergoes random phase jumps (FUS) between 0 and p. The laser light is also amplitude modulated and undergoes the same random phase jumps (F0) as the ultrasound but with a time delay (tdelay). UST: ultrasound transducer, US: ultrasound; BS: beam splitter, M: mirror, PRC: photorefractive crystal, R: reference, R*: conjugate of reference beam, SLM: spatial light modulator, PC: personal computer, AOM: acousto-optical modulator, REC: rare-earth crystal |
Fig.7 Concepts behind the different crystals used in AOT. (a) Photorefractive crystal based interferometry: A reference beam (ER) is set to a specific wavelength (i.e., frequency of the ultrasound modulated light) and travels through the photorefractive crystal (PRC) so that ER is diffracted (ED) and matches the wavefront of the signal wavefront (ES) that has the same frequency as ER. (b) Photorefractive crystal (PRC) phase conjugation. An example of an incident light wave (ES) and how light is reflected off a mirror (ES′). The wavefront reverses direction and the part of the light wave that arrived at the mirror first is reflected back first. For PRC-based phase conjugation, a reference beam (ER) and its conjugate (ER*) are injected into the PRC with an incident wave ES moving to the left. The light wave is phase conjugated (ES*) in which the shape of the wavefront is retained and moves to the left. However, only the portion of ES that matches the frequency of ER and ER* will phase conjugated. (c) Spectral hole burning (SHB). For SHB, light of a specific frequency if filtered, while the rest of the light is absorbed by a rare-earth crystal (REC). The first step is to “burn” the crystal using a beam (EB) with a given frequency. For example, the REC can be burned with the modulated light frequency (optical wavelength (n0) plus the ultrasound frequency (na)). Ideally, only the signal that matches the frequency of EB will pass through the REC and be detected |
[1] |
Wang L V. Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography. Disease Markers, 2003– 2004, 19(2–3): 123–138
CrossRef
Pubmed
Google scholar
|
[2] |
Brillouin L.Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique. Ann. Physique (Paris), 1922, 17(88–122): 21
|
[3] |
Debye P, Sears F W. On the scattering of light by supersonic waves. Proceedings of the National Academy of Sciences of the United States of America, 1932, 18(6): 409–414
CrossRef
Pubmed
Google scholar
|
[4] |
Lucas R, Biquard P. Propriétés optique des milieux solides et liquides soumis aux vibrations élastiques ultra sonores. Journal of Physics, 1932, 71(10): 464–477
|
[5] |
Marks F A, Tomlinson H W, Brooksby G W. Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination. In: Proceedings of SPIE 1888, Photon Migration and Imaging in Random Media and Tissues. 1993, 500–510
|
[6] |
Wang L, Jacques S L, Zhao X. Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media. Optics Letters, 1995, 20(6): 629–631
CrossRef
Pubmed
Google scholar
|
[7] |
Leutz W, Maret G. Ultrasonic modulation of multiply scattered light. Physica B, Condensed Matter, 1995, 204(1−4): 14–19
CrossRef
Google scholar
|
[8] |
Wang L V. Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model. Physical Review Letters, 2001, 87(4): 043903
CrossRef
Pubmed
Google scholar
|
[9] |
Li C, Kim C, Lihong V W. Photoacoustic tomography and ultrasound-modulated optical tomography. In: Boas D A, Pitris C, Ramanujam N, eds. Handbook of Biomedical Optics. Boca Raton, Florida: CRC Press, 2011, 419–442
|
[10] |
Resink S G, Boccara A C, Steenbergen W. State-of-the art of acousto-optic sensing and imaging of turbid media. Journal of Biomedical Optics, 2012, 17(4): 040901
CrossRef
Pubmed
Google scholar
|
[11] |
Walther A, Rippe L, Lihong V W, Andersson-Engels S, Kröll S. Is optical imaging of oxygenation at heart depth possible? (submitted), 2017
|
[12] |
Elson D S, Li R, Dunsby C, Eckersley R, Tang M X. Ultrasound-mediated optical tomography: a review of current methods. Interface Focus, 2011, 1(4): 632–648
CrossRef
Pubmed
Google scholar
|
[13] |
Lai P, Xu X, Wang L V. Ultrasound-modulated optical tomography at new depth. Journal of Biomedical Optics, 2012, 17(6): 066006
CrossRef
Pubmed
Google scholar
|
[14] |
Zhang H, Sabooni M, Rippe L, Kim C, Kröll S, Wang L V, Hemmer P R. Slow light for deep tissue imaging with ultrasound modulation. Applied Physics Letters, 2012, 100(13): 131102
CrossRef
Pubmed
Google scholar
|
[15] |
Suzuki Y, Lai P, Xu X, Wang L. High-sensitivity ultrasound-modulated optical tomography with a photorefractive polymer. Optics Letters, 2013, 38(6): 899–901
CrossRef
Pubmed
Google scholar
|
[16] |
Lai P, Suzuki Y, Xu X, Wang L V. Exploring ultrasound-modulated optical tomography at clinically useful depths using the photorefractive effect. In: Oraevsky A A, Wang L V, eds. Photons Plus Ultrasound: imaging and Sensing: Proceedings of SPIE. 2013, 85812X
|
[17] |
Yao G, Wang L V. Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue. Applied Optics, 2000, 39(4): 659–664
CrossRef
Pubmed
Google scholar
|
[18] |
Jang M, Ruan H, Judkewitz B, Yang C. Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique. Optics Express, 2014, 22(5): 5787–5807
CrossRef
Pubmed
Google scholar
|
[19] |
Hussain A, Daoudi K, Hondebrink E, Steenbergen W. Mapping optical fluence variations in highly scattering media by measuring ultrasonically modulated backscattered light. Journal of Biomedical Optics, 2014, 19(6): 066002
CrossRef
Pubmed
Google scholar
|
[20] |
Wang L V. Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model. Optics Letters, 2001, 26(15): 1191–1193
CrossRef
Pubmed
Google scholar
|
[21] |
Huynh N T, Hayes-Gill B R, Zhang F, Morgan S P. Ultrasound modulated imaging of luminescence generated within a scattering medium. Journal of Biomedical Optics, 2013, 18(2): 020505
CrossRef
Pubmed
Google scholar
|
[22] |
Jarrett C W, Caskey C F, Gore J C. Detection of a novel mechanism of acousto-optic modulation of incoherent light. PLoS One, 2014, 9(8): e104268
CrossRef
Pubmed
Google scholar
|
[23] |
Huynh N T, Ruan H, He D, Hayes-Gill B R, Morgan S P. Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals. Journal of Biomedical Optics, 2012, 17(7): 076008
CrossRef
Pubmed
Google scholar
|
[24] |
Wang L V, Wu H. Biomedical Optics: Principles and Imaging. New Jersey: John Wiley & Sons, 2012
|
[25] |
Sakadžić S, Wang L V. Ultrasonic modulation of multiply scattered coherent light: an analytical model for anisotropically scattering media. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002, 66(2): 026603
CrossRef
Pubmed
Google scholar
|
[26] |
Yao G, Wang L V. Signal dependence and noise source in ultrasound-modulated optical tomography. Applied Optics, 2004, 43(6): 1320–1326
CrossRef
Pubmed
Google scholar
|
[27] |
Sakadžić S, Wang L V. Correlation transfer equation for ultrasound-modulated multiply scattered light. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(3): 036618
CrossRef
Pubmed
Google scholar
|
[28] |
Sakadžić S, Wang L V. Correlation transfer equation for multiply scattered light modulated by an ultrasonic pulse. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2007, 24(9): 2797–2806
CrossRef
Pubmed
Google scholar
|
[29] |
Sakadžić S, Wang L V. Modulation of multiply scattered coherent light by ultrasonic pulses: an analytical model. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(3): 036620
CrossRef
Pubmed
Google scholar
|
[30] |
Alerstam E, Svensson T, Andersson-Engels S. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. Journal of Biomedical Optics, 2008, 13(6): 060504
|
[31] |
Leung T S, Powell S.Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit. Journal of Biomedical Optics, 2010, 15(5): 055007
|
[32] |
Powell S, Leung T S. Highly parallel Monte-Carlo simulations of the acousto-optic effect in heterogeneous turbid media. Journal of Biomedical Optics, 2012, 17(4): 045002
CrossRef
Pubmed
Google scholar
|
[33] |
Adams M T, Cleveland R O, Roy R A. Modeling-based design and assessment of an acousto-optic guided high-intensity focused ultrasound system. Journal of Biomedical Optics, 2017, 22(1): 017001
CrossRef
Pubmed
Google scholar
|
[34] |
Lu M Z, Wu Y P, Shi Y, Guan Y B, Guo X L, Wan M X. Monte Carlo simulation of scattered light with shear waves generated by acoustic radiation force for acousto-optic imaging. Chinese Physics Letters, 2012, 29(12): 124302
CrossRef
Google scholar
|
[35] |
Li Y J, Huang W J, Ma F C, Wang R, Lu M Z, Wan M X. A modified Monte Carlo model of speckle tracking of shear wave induced by acoustic radiation force for acousto-optic elasticity imaging. Chinese Physics Letters, 2016, 33(11): 114301
CrossRef
Google scholar
|
[36] |
Li S, Cheng Y, Song L, Eckersley R J, Elson D S, Tang M X. Tracking shear waves in turbid medium by light: theory, simulation, and experiment. Optics Letters, 2014, 39(6): 1597–1600
CrossRef
Pubmed
Google scholar
|
[37] |
Tsalach A, Schiffer Z, Ratner E, Breskin I, Zeitak R, Shechter R, Balberg M. Depth selective acousto-optic flow measurement. Biomedical Optics Express, 2015, 6(12): 4871–4886
CrossRef
Pubmed
Google scholar
|
[38] |
Tsalach A, Metzger Y, Breskin I, Zeitak R, Shechter R. Ultrasound modulated light blood flow measurement using intensity autocorrelation function: a Monte-Carlo simulation. In: Proceedings of SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing, 2014, 89433N
|
[39] |
Hollmann J L, Horstmeyer R, Yang C, DiMarzio C A. Analysis and modeling of an ultrasound-modulated guide star to increase the depth of focusing in a turbid medium. Journal of Biomedical Optics, 2013, 18(2): 025004
CrossRef
Pubmed
Google scholar
|
[40] |
Hollmann J L, Horstmeyer R, Yang C, DiMarzio C A. Diffusion model for ultrasound-modulated light. Journal of Biomedical Optics, 2014, 19(3): 035005
CrossRef
Pubmed
Google scholar
|
[41] |
Fiolka R, Si K, Cui M. Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation. Optics Express, 2012, 20(22): 24827–24834
CrossRef
Pubmed
Google scholar
|
[42] |
Chandran R S, Roy D, Kanhirodan R, Vasu R M, Devi C U. Ultrasound modulated optical tomography: Young’s modulus of the insonified region from measurement of natural frequency of vibration. Optics Express, 2011, 19(23): 22837–22850
CrossRef
Pubmed
Google scholar
|
[43] |
Chandran R S, Devaraj G, Kanhirodan R, Roy D, Vasu R M. Detection and estimation of liquid flow through a pipe in a tissue-like object with ultrasound-assisted diffuse correlation spectroscopy. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2015, 32(10): 1888–1897
CrossRef
Pubmed
Google scholar
|
[44] |
Chandran R S, Sarkar S, Kanhirodan R, Roy D, Vasu R M. Diffusing-wave spectroscopy in an inhomogeneous object: local viscoelastic spectra from ultrasound-assisted measurement of correlation decay arising from the ultrasound focal volume. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2014, 90(1): 012303
CrossRef
Pubmed
Google scholar
|
[45] |
Yang Q, Xu X, Lai P, Xu D, Wang L V. Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution. Journal of Biomedical Optics, 2013, 18(11): 110502
CrossRef
Pubmed
Google scholar
|
[46] |
Lai P, Roy R A, Murray T W. Quantitative characterization of turbid media using pressure contrast acousto-optic imaging. Optics Letters, 2009, 34(18): 2850–2852
CrossRef
Pubmed
Google scholar
|
[47] |
Murray T W, Lai P, Roy R A. Measuring tissue properties and monitoring therapeutic responses using acousto-optic imaging. Annals of Biomedical Engineering, 2012, 40(2): 474–485
CrossRef
Pubmed
Google scholar
|
[48] |
Ruan H, Mather M L, Morgan S P. Pulse inversion ultrasound modulated optical tomography. Optics Letters, 2012, 37(10): 1658–1660
CrossRef
Pubmed
Google scholar
|
[49] |
Ruan H, Mather M L, Morgan S P. Pulsed ultrasound modulated optical tomography with harmonic lock-in holography detection. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2013, 30(7): 1409–1416
CrossRef
Pubmed
Google scholar
|
[50] |
Ruan H, Mather M L, Morgan S P. Pulsed ultrasound modulated optical tomography utilizing the harmonic response of lock-in detection. Applied Optics, 2013, 52(19): 4755–4762
CrossRef
Pubmed
Google scholar
|
[51] |
Laudereau J B, Grabar A A, Tanter M, Gennisson J L, Ramaz F. Ultrafast acousto-optic imaging with ultrasonic plane waves. Optics Express, 2016, 24(4): 3774–3789
CrossRef
Pubmed
Google scholar
|
[52] |
Lai P, McLaughlan J R, Draudt A B, Murray T W, Cleveland R O, Roy R A. Real-time monitoring of high-intensity focused ultrasound lesion formation using acousto-optic sensing. Ultrasound in Medicine & Biology, 2011, 37(2): 239–252
CrossRef
Pubmed
Google scholar
|
[53] |
Ruan H, Jang M, Yang C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light. Nature Communications, 2015, 6: 8968
CrossRef
Pubmed
Google scholar
|
[54] |
Ruan H, Mather M L, Morgan S P. Ultrasound modulated optical tomography contrast enhancement with non-linear oscillation of microbubbles. Quantitative Imaging in Medicine and Surgery, 2015, 5(1): 9–16
Pubmed
|
[55] |
Liu Y, Feshitan J A, Wei M Y, Borden M A, Yuan B. Ultrasound-modulated fluorescence based on fluorescent microbubbles. Journal of Biomedical Optics, 2014, 19(8): 085005
CrossRef
Pubmed
Google scholar
|
[56] |
Li R, Elson D S, Dunsby C, Eckersley R, Tang M X. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography. Optics Express, 2011, 19(8): 7299–7311
CrossRef
Pubmed
Google scholar
|
[57] |
Cheng Y, Li R, Li S, Dunsby C, Eckersley R J, Elson D S, Tang M X. Shear wave elasticity imaging based on acoustic radiation force and optical detection. Ultrasound in Medicine & Biology, 2012, 38(9): 1637–1645
CrossRef
Pubmed
Google scholar
|
[58] |
Cheng Y, Li S, Eckersley R J, Elson D S, Tang M X. Viscosity measurement based on shear-wave laser speckle contrast analysis. Journal of Biomedical Optics, 2013, 18(12): 121511
CrossRef
Pubmed
Google scholar
|
[59] |
Cheng Y, Li S, Eckersley R J, Elson D S, Tang M X. Detecting tissue optical and mechanical properties with an ultrasound modulated optical imaging system in reflection detection geometry. Biomedical Optics Express, 2015, 6(1): 63–71
CrossRef
Pubmed
Google scholar
|
[60] |
Li S, Cheng Y, Eckersley R J, Elson D S, Tang M X. Dual shear wave induced laser speckle contrast signal and the improvement in shear wave speed measurement. Biomedical Optics Express, 2015, 6(6): 1954–1962
CrossRef
Pubmed
Google scholar
|
[61] |
Li J, Wang L V. Methods for parallel-detection-based ultrasound-modulated optical tomography. Applied Optics, 2002, 41(10): 2079–2084
CrossRef
Pubmed
Google scholar
|
[62] |
Bratchenia A, Molenaar R, Kooyman R P H. Towards quantitative acousto-optic imaging in tissue. Laser Physics, 2011, 21(3): 601–607
CrossRef
Google scholar
|
[63] |
Resink S G, Hondebrink E, Steenbergen W. Towards acousto-optic tissue imaging with nanosecond laser pulses. Optics Express, 2014, 22(3): 3564–3571
CrossRef
Pubmed
Google scholar
|
[64] |
Resink S G, Steenbergen W. Tandem-pulsed acousto-optics: an analytical framework of modulated high-contrast speckle patterns. Physics in Medicine and Biology, 2015, 60(11): 4371–4382
CrossRef
Pubmed
Google scholar
|
[65] |
Resink S, Hondebrink E, Steenbergen W. Solving the speckle decorrelation challenge in acousto-optic sensing using tandem nanosecond pulses within the ultrasound period. Optics Letters, 2014, 39(22): 6486–6489
CrossRef
Pubmed
Google scholar
|
[66] |
Zhang Q, Mather M L, Morgan S P. Numerical investigation of the mechanisms of ultrasound-modulated bioluminescence tomography. IEEE Transactions on Bio-medical Engineering, 2015, 62(9): 2135–2143
CrossRef
Pubmed
Google scholar
|
[67] |
Barjean K, Contreras K, Laudereau J B, Tinet É, Ettori D, Ramaz F, Tualle J M. Fourier transform acousto-optic imaging with a custom-designed CMOS smart-pixels array. Optics Letters, 2015, 40(5): 705–708
CrossRef
Pubmed
Google scholar
|
[68] |
Barjean K, Ramaz F, Tualle J M. Theoretical study of Fourier-transform acousto-optic imaging. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2016, 33(5): 854–862
CrossRef
Pubmed
Google scholar
|
[69] |
Liu Y, Shen Y, Ma C, Shi J, Wang L V. Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media. Applied Physics Letters, 2016, 108(23): 231106
CrossRef
Pubmed
Google scholar
|
[70] |
Farahi S, Benoit E, Grabar A A, Huignard J P, Ramaz F. Time resolved three-dimensional acousto-optic imaging of thick scattering media. Optics Letters, 2012, 37(13): 2754–2756
CrossRef
Pubmed
Google scholar
|
[71] |
Jayet B, Huignard J P, Ramaz F. Fast wavefront adaptive holography in Nd:YVO4 for ultrasound optical tomography imaging. Optics Express, 2014, 22(17): 20622–20633
CrossRef
Pubmed
Google scholar
|
[72] |
À La Guillaume E B, Bortolozzo U, Huignard J P, Residori S, Ramaz F. Dynamic ultrasound modulated optical tomography by self-referenced photorefractive holography. Optics Letters, 2013, 38(3): 287–289
CrossRef
Pubmed
Google scholar
|
[73] |
Devaux F, Huignard J P, Ramaz F. Modelization and optimized speckle detection scheme in photorefractive self-referenced acousto-optic imaging. Optics Express, 2014, 22(9): 10682–10692
CrossRef
Pubmed
Google scholar
|
[74] |
Laudereau J B, À La Guillaume E B, Servois V, Mariani P, Grabar A A, Tanter M, Gennisson J L, Ramaz F. Multi-modal acousto-optic/ultrasound imaging of ex vivo liver tumors at 790 nm using a Sn2P2S6 wavefront adaptive holographic setup. Journal of Biophotonics, 2015, 8(5): 429–436
CrossRef
Pubmed
Google scholar
|
[75] |
Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photonics, 2011, 5(3): 154–157
CrossRef
Pubmed
Google scholar
|
[76] |
Liu H, Xu X, Lai P, Wang L V. Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths. Journal of Biomedical Optics, 2011, 16(8): 086009
|
[77] |
Lai P, Xu X, Liu H, Suzuki Y, Wang L V. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media. Journal of Biomedical Optics, 2011, 16(8): 080505
CrossRef
Pubmed
Google scholar
|
[78] |
Suzuki Y, Xu X, Lai P, Wang L V. Energy enhancement in time-reversed ultrasonically encoded optical focusing using a photorefractive polymer. Journal of Biomedical Optics, 2012, 17(8): 080507
CrossRef
Pubmed
Google scholar
|
[79] |
Liu Y, Lai P, Ma C, Xu X, Grabar A A, Wang L V. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nature Communications, 2015, 6: 5904
CrossRef
Pubmed
Google scholar
|
[80] |
Liu Y, Ma C, Shen Y, Wang L V. Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media. Optics Letters, 2016, 41(7): 1321–1324
CrossRef
Pubmed
Google scholar
|
[81] |
Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation. Nature Photonics, 2012, 6(10): 657–661
CrossRef
Pubmed
Google scholar
|
[82] |
Wang Y M, Judkewitz B, Dimarzio C A, Yang C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nature Communications, 2012, 3: 928
CrossRef
Pubmed
Google scholar
|
[83] |
Lai P, Suzuki Y, Xu X, Wang L V. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media. Laser Physics Letters, 2013, 10(7): 075604
CrossRef
Pubmed
Google scholar
|
[84] |
Tay J W, Lai P, Suzuki Y, Wang L V. Ultrasonically encoded wavefront shaping for focusing into random media. Scientific Reports, 2014, 4(1): 3918
CrossRef
Pubmed
Google scholar
|
[85] |
Suzuki Y, Tay J W, Yang Q, Wang L V. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation. Optics Letters, 2014, 39(12): 3441–3444
CrossRef
Pubmed
Google scholar
|
[86] |
Si K, Fiolka R, Cui M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy. Scientific Reports, 2012, 2: 748
CrossRef
Pubmed
Google scholar
|
[87] |
Judkewitz B, Wang Y M, Horstmeyer R, Mathy A, Yang C. Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE). Nature Photonics, 2013, 7(4): 300–305
CrossRef
Pubmed
Google scholar
|
[88] |
Ruan H, Jang M, Judkewitz B, Yang C. Iterative time-reversed ultrasonically encoded light focusing in backscattering mode. Scientific Reports, 2014, 4(1): 7156
CrossRef
Pubmed
Google scholar
|
[89] |
Xu X, Kothapalli S-R, Liu H, Wang L V. Spectral hole burning for ultrasound-modulated optical tomography of thick tissue. Journal of Biomedical Optics, 2010, 15(6): 066018
|
[90] |
McAuslan D, Taylor L, Longdell J. Using quantum memory techniques for optical detection of ultrasound. Applied Physics Letters, 2012, 101(19): 191112
CrossRef
Google scholar
|
[91] |
Taylor L R, McAuslan D L, Longdell J J. Optical detection of ultrasound using AFC-based quantum memory technique in cryogenic rare earth ion doped crystals. In: Proceedings of SPIE 8581, Photons Plus Ultrasound: Imaging and Sensing. 2013, 858117
|
[92] |
Taylor L R, Doronin A, Meglinski I, Longdell J J. Acousto-optic imaging using quantum memories in cryogenic rare earth ion doped crystals. In: Proceedings of SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing. 2014, 89431D
|
[93] |
Lesaffre M, Farahi S, Gross M, Delaye P, Boccara C, Ramaz F. Acousto-optical coherence tomography using random phase jumps on ultrasound and light. Optics Express, 2009, 17(20): 18211–18218
CrossRef
Pubmed
Google scholar
|
[94] |
Lesaffre M, Farahi S, Boccara A C, Ramaz F, Gross M. Theoretical study of acousto-optical coherence tomography using random phase jumps on ultrasound and light. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(7): 1436–1444
CrossRef
Pubmed
Google scholar
|
[95] |
Lesaffre M, Farahi S, Ramaz F, Gross M. Experimental study of z resolution in acousto-optical coherence tomography using random phase jumps on ultrasound and light. Applied Optics, 2013, 52(5): 949–957
CrossRef
Pubmed
Google scholar
|
[96] |
A La Guillaume E B, Farahi S, Bossy E, Gross M, Ramaz F. Acousto-optical coherence tomography with a digital holographic detection scheme. Optics Letters, 2012, 37(15): 3216–3218
CrossRef
Pubmed
Google scholar
|
[97] |
Staley J, Hondebrink E, Peterson W, Steenbergen W. Photoacoustic guided ultrasound wavefront shaping for targeted acousto-optic imaging. Optics Express, 2013, 21(25): 30553–30562
CrossRef
Pubmed
Google scholar
|
[98] |
Daoudi K, Hussain A, Hondebrink E, Steenbergen W. Correcting photoacoustic signals for fluence variations using acousto-optic modulation. Optics Express, 2012, 20(13): 14117–14129
CrossRef
Pubmed
Google scholar
|
[99] |
Hussain A, Petersen W, Staley J, Hondebrink E, Steenbergen W. Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics. Optics Letters, 2016, 41(8): 1720–1723
CrossRef
Pubmed
Google scholar
|
[100] |
Schytz H W, Guo S, Jensen L T, Kamar M, Nini A, Gress D R, Ashina M. A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT. Neurocritical Care, 2012, 17(1): 139–145
CrossRef
Pubmed
Google scholar
|
[101] |
c-FLOWTM - Cerebral Perfusion Monitor- Ornim- Non Invasive Brain Monitoring | Brain Blood Flow | Cerebral Blood Flow, http://www.ornim.com/c-flow/.
|
[102] |
Tsalach A, Ratner E, Lokshin S, Silman Z, Breskin I, Budin N, Kamar M. Cerebral autoregulation real-time monitoring. PLoS One, 2016, 11(8): e0161907
CrossRef
Pubmed
Google scholar
|
[103] |
Zhu L, Xie W, Li Z, Li H. Experimental study of ultrasound-modulated scattering light using different frequencies ultrasound probes. Chinese Optics Letters, 2014, 12(7): 071701–071703
CrossRef
Google scholar
|
[104] |
Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Optics Express, 2010, 18(4): 3444–3455
CrossRef
Pubmed
Google scholar
|
[105] |
Singh M S, Kanhirodan R, Vasu R M, Roy D. Ultrasound modulation of coherent light in a multiple-scattering medium: experimental verification of nonzero average phase carried by light. Biomedical Optics Express, 2012, 3(9): 2100–2110
CrossRef
Pubmed
Google scholar
|
[106] |
Li J, Ku G, Wang L V. Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles. Applied Optics, 2002, 41(28): 6030–6035
CrossRef
Pubmed
Google scholar
|
[107] |
Zhu L, Lin J, Lin B, Li H. Noninvasive blood glucose measurement by ultrasound-modulated optical technique. Chinese Optics Letters, 2013, 11(2): 021701–021705
CrossRef
Google scholar
|
[108] |
Gross M, Goy P, Al-Koussa M. Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging. Optics Letters, 2003, 28(24): 2482–2484
CrossRef
Pubmed
Google scholar
|
[109] |
Gross M. Speckle decorrelation in ultrasound-modulated optical tomography made by heterodyne holography. 2016, arXiv preprint arXiv:1606.02902,
|
[110] |
Gross M, Ramaz F, Forget B, Atlan M, Boccara A, Delaye P, Roosen G. Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media. Optics Express, 2005, 13(18): 7097–7112
CrossRef
Pubmed
Google scholar
|
[111] |
Tay S, Blanche P A, Voorakaranam R, Tunç A V, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, St Hilaire P, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N. An updatable holographic three-dimensional display. Nature, 2008, 451(7179): 694–698
CrossRef
Pubmed
Google scholar
|
[112] |
Lerosey G, Fink M. Acousto-optic imaging: Merging the best of two worlds. Nature Photonics, 2013, 7(4): 265–267
CrossRef
Google scholar
|
[113] |
He G S. Optical phase conjugation: principles, techniques, and applications. Progress in Quantum Electronics, 2002, 26(3): 131–191
CrossRef
Google scholar
|
[114] |
Ma C, Xu X, Wang L V. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33000× optical power gain. Scientific Reports, 2015, 5(1): 8896
CrossRef
Pubmed
Google scholar
|
[115] |
Jayet B, Huignard J P, Ramaz F. Optical phase conjugation in Nd:YVO4 for acousto-optic detection in scattering media. Optics Letters, 2013, 38(8): 1256–1258
CrossRef
Pubmed
Google scholar
|
[116] |
Khurgin J B. Slow light in various media: a tutorial. Advances in Optics and Photonics, 2010, 2(3): 287–318
CrossRef
Google scholar
|
[117] |
Li Y, Zhang H, Kim C, Wagner K H, Hemmer P, Wang L V. Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter. Applied Physics Letters, 2008, 93(1): 011111
CrossRef
Pubmed
Google scholar
|
[118] |
Li Y, Hemmer P, Kim C, Zhang H, Wang L V. Detection of ultrasound-modulated diffuse photons using spectral-hole burning. Optics Express, 2008, 16(19): 14862–14874
CrossRef
Pubmed
Google scholar
|
[119] |
Racheli N, Ron A, Metzger Y, Breskin I, Enden G, Balberg M, Shechter R. Non-invasive blood flow measurements using ultrasound modulated diffused light. In: Proceedings of SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing. 2012, 82232A
|
[120] |
Ron A, Racheli N, Breskin I, Metzger Y, Silman Z, Kamar M, Nini A, Shechter R, Balberg M. Measuring tissue blood flow using ultrasound modulated diffused light. In: Proceedings of SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing. 2012, 82232J
|
[121] |
Rosenthal G, Furmanov A, Itshayek E, Shoshan Y, Singh V. Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury. Journal of Neurosurgery, 2014, 120(4): 901–907
CrossRef
Pubmed
Google scholar
|
[122] |
Schwarz M, Rivera G, Hammond M, Silman Z, Jackson K, Kofke W A. Acousto-optic cerebral blood flow monitoring during induction of anesthesia in humans. Neurocritical Care, 2016, 24(3): 436–441
CrossRef
Pubmed
Google scholar
|
[123] |
Hori D, Hogue C, Adachi H, Max L, Price J, Sciortino C, Zehr K, Conte J, Cameron D, Mandal K. Perioperative optimal blood pressure as determined by ultrasound tagged near infrared spectroscopy and its association with postoperative acute kidney injury in cardiac surgery patients. Interactive Cardiovascular and Thoracic Surgery, 2016, 22(4): 445–451
CrossRef
Pubmed
Google scholar
|
[124] |
Hori D, Hogue C W Jr, Shah A, Brown C, Neufeld K J, Conte J V, Price J, Sciortino C, Max L, Laflam A, Adachi H, Cameron D E, Mandal K. Cerebral autoregulation monitoring with ultrasound-tagged near-infrared spectroscopy in cardiac surgery patients. Anesthesia and Analgesia, 2015, 121(5): 1187–1193
CrossRef
Pubmed
Google scholar
|
[125] |
Powell S, Leung T S. Linear reconstruction of absorption perturbations in coherent ultrasound-modulated optical tomography. Journal of Biomedical Optics, 2013, 18(12): 126020
CrossRef
Pubmed
Google scholar
|
[126] |
Powell S, Leung T S. Quantitative reconstruction of absorption and scattering coefficients in ultrasound-modulated optical tomography. In: Proceedings of SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing. 2014, 89434X–89434X–89411
|
[127] |
Powell S, Arridge S R, Leung T S. Gradient-based quantitative image reconstruction in ultrasound-modulated optical tomography: first harmonic measurement type in a linearised diffusion formulation. IEEE Transactions on Medical Imaging, 2016, 35(2): 456–467
CrossRef
Pubmed
Google scholar
|
[128] |
Bal G, Schotland J C. Inverse scattering and acousto-optic imaging. Physical Review Letters, 2010, 104(4): 043902
CrossRef
Pubmed
Google scholar
|
[129] |
Bal G, Moskow S. Local inversions in ultrasound-modulated optical tomography. Inverse Problems, 2014, 30(2): 025005
CrossRef
Google scholar
|
[130] |
Bal G, Schotland J C. Ultrasound-modulated bioluminescence tomography. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2014, 89(3): 031201
CrossRef
Pubmed
Google scholar
|
[131] |
Bal G, Chung F J, Schotland J C. Ultrasound modulated bioluminescence tomography and controllability of the radiative transport equation. SIAM Journal on Mathematical Analysis, 2016, 48(2): 1332–1347
CrossRef
Google scholar
|
[132] |
Ammari H, Bossy E, Garnier J, Nguyen L, Seppecher L. A reconstruction algorithm for ultrasound-modulated diffuse optical tomography. Proceedings of the American Mathematical Society, 2014, 142(9): 3221–3236
CrossRef
Google scholar
|
[133] |
Ammari H, Garnier J, Nguyen L H, Seppecher L. Reconstruction of a piecewise smooth absorption coefficient by an acousto-optic process. Communications in Partial Differential Equations, 2013, 38(10): 1737–1762
CrossRef
Google scholar
|
[134] |
Ammari H, Nguyen L H, Seppecher L. Reconstruction and stability in acousto-optic imaging for absorption maps with bounded variation. Journal of Functional Analysis, 2014, 267(11): 4361–4398
CrossRef
Google scholar
|
[135] |
Huynh N T, He D, Hayes-Gill B R, Crowe J A, Walker J G, Mather M L, Rose F R, Parker N G, Povey M J, Morgan S P. Application of a maximum likelihood algorithm to ultrasound modulated optical tomography. Journal of Biomedical Optics, 2012, 17(2): 026014
CrossRef
Pubmed
Google scholar
|
[136] |
Allmaras M, Bangerth W. Reconstructions in ultrasound modulated optical tomography. Journal of Inverse and Ill-Posed Problems, 2011, 19(6): 801–823
CrossRef
Google scholar
|
[137] |
Bratchenia A, Molenaar R, van Leeuwen T G, Kooyman R P H. Acousto-optic-assisted diffuse optical tomography. Optics Letters, 2011, 36(9): 1539–1541
CrossRef
Pubmed
Google scholar
|
[138] |
Varma H M, Mohanan K P, Hyvönen N, Nandakumaran A K, Vasu R M. Ultrasound-modulated optical tomography: recovery of amplitude of vibration in the insonified region from boundary measurement of light correlation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(11): 2322–2331
CrossRef
Pubmed
Google scholar
|
[139] |
Mohanan K P, Nandakumaran A K, Roy D, Vasu R M. Ultrasound-modulated optical tomography: direct recovery of elasticity distribution from experimentally measured intensity autocorrelation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2015, 32(5): 955–963
CrossRef
Pubmed
Google scholar
|
[140] |
Li J, Wang L V. Ultrasound-modulated optical computed tomography of biological tissues. Applied Physics Letters, 2004, 84(9): 1597–1599
CrossRef
Google scholar
|
Part of a collection:
《Frontiers of Optoelectronics》 2017-218 highly cited articles
/
〈 |
|
〉 |