Basic properties of a new Nd-doped laser crystal: Nd:GdNbO4
Shoujun DING, Qingli ZHANG, Wenpeng LIU, Jianqiao LUO, Dunlu SUN
Basic properties of a new Nd-doped laser crystal: Nd:GdNbO4
A Nd-doped GdNbO4 single crystals have been grown successfully using the Czochralski technique. The chemical etching method was employed to study the defects in the structural morphology of Nd:GdNbO4 crystal with phosphoric acid etchant. Mechanical properties (such as hardness, yield strength, fracture toughness, and brittle index) of the as-grown crystal were systematically estimated on the basis of the Vickers hardness test for the first time. The transmission spectrum of Nd:GdNbO4 was measured in the wavelength range of 320–2400 nm at room temperature, and the absorption peaks were assigned. Results hold great significance for further research on Nd:GdNbO4.
Nd:GdNbO4 / laser crystal / mechanical properties / chemical etching
[1] |
Sanghera J, Kim W, Villalobos G, Shaw B, Baker C, Frantz J, Sadowski B, Aggarwal I. Ceramic laser materials. Materials (Basel), 2012, 5(12): 258–277
CrossRef
Google scholar
|
[2] |
Zhang H J, Meng X L, Zhu L, Wang C Q, Wang P, Zhang H Z, Chow Y T, Dawes J. Growth and laser properties of laser crystal Nd:Gd0.8La0.2VO4. Journal of Crystal Growth, 1998, 193(3): 370–373
CrossRef
Google scholar
|
[3] |
Lee M C, Chang C S, Huang Y L, Chang S L, Chang C H, Lin Y F, Hu S. Treatment of melasma with mixed parameters of 1064-nm Q-switched Nd:YAG laser toning and an enhanced effect of ultrasonic application of vitamin C: a split-face study. Lasers in Medical Science, 2015, 30(1): 159–163
CrossRef
Pubmed
Google scholar
|
[4] |
Kane T J, Kozlovsky W J, ByerR L, Byvik C E. Coherent laser radar at 1.06 μm using Nd:YAG lasers. Optics Letters, 1987, 12(4): 239–241
CrossRef
Pubmed
Google scholar
|
[5] |
Rodin A M, Grishin M, Michailovas A. Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal. Optics & Laser Technology, 2016, 76: 46–52
CrossRef
Google scholar
|
[6] |
Yu H H, Liu J H, Zhang H J, Kaminskii A A, Wang Z P, Wang J Y. Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer. Laser & Photonics Reviews, 2014, 8(6): 847–864
CrossRef
Google scholar
|
[7] |
Nazarov M, Kim Y J, Lee E Y, Min K, Jeong M S, Lee S W, Noh D Y. Luminescence and Raman studies of YNbO4 phosphors doped by Eu3+, Ga3+, and Al3+. Journal of Applied Physics, 2010, 107(10): 103104
CrossRef
Google scholar
|
[8] |
Wang Y Z, Zhang L L, Cao R P, Miao Q, Qiu J Q. Structure and properties of CaNb2O6:Sm3+ thin films by pulsed laser deposition. Applied Physics A, 2014, 115(4): 1365–1370
|
[9] |
Ding S J, Peng F, Zhang Q L, Luo J Q, Liu W P, Sun D L, Dou R Q, Sun G H. Structure, spectroscopic properties and laser performance of Nd:YNbO4 at 1066 nm. Optical Materials, 2016, 62: 7–11
CrossRef
Google scholar
|
[10] |
Fang X, Roushan M, Zhang R, Peng J, Zeng H, Li J. Tuning and enhancing white light emission of II–VI based inorganic–organic hybrid semiconductors as single-phased phosphors. Chemistry of Materials, 2012, 24(10): 1710–1717
CrossRef
Google scholar
|
[11] |
Jüstel T, Nikol H, Ronda C. New developments in the field of luminescent materials for lighting and displays. Angewandte Chemie International Edition, 1998, 37(22): 3084–3103
CrossRef
Google scholar
|
[12] |
Huang C, Liu W, Chen T. Single-phased white-light phosphors Ca9Gd(PO4)7:Eu 2+, Mn 2+ under near-ultraviolet excitation. Journal of Physical Chemistry C, 2010, 114(43): 18698–18701
CrossRef
Google scholar
|
[13] |
Dou R Q, Zhang Q L, Luo J Q, Chen J K, Yang H J, Liu W P, Sun G H, Sun D L. Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal. Optical Materials, 2015, 42: 56–61
CrossRef
Google scholar
|
[14] |
Ding S J, Peng F, Zhang Q L, Luo J Q, Liu W P, Sun D L, Dou R Q, Gao J Y, Sun G H, Cheng M J. Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4. Journal of Alloys and Compounds, 2017, 693: 339–343
CrossRef
Google scholar
|
[15] |
Zhong D G, Teng B, Cao L F, Fei Y, Zhang S M, Li Y Y, Wang C, He L X, Huang W X. Characterization of dislocations and sub-grain boundaries in mixed rare earth orthovanadate of Yb:YxLu1-xVO4. Optical Materials, 2014, 36(12): 2034–2038
CrossRef
Google scholar
|
[16] |
Dou R Q, Zhang Q L, Liu W P, Luo J Q, Wang X F, Ding S J, Sun D L. Growth, structure, chemical etching, and spectroscopic properties of a 2.9 mm Tm,Ho:GdYTaO4 laser crystal. Optical Materials, 2015, 48: 80–85
CrossRef
Google scholar
|
[17] |
Ding S J, Liu W P, Zhang Q L, Peng F, Luo J Q, Dou R Q, Sun G H, Sun D L. Crystal growth, defects, and mechanical and spectral properties of a novel mixed laser crystal Nd:GdYNbO4. Applied Physics A, 2017, 123: 70
|
[18] |
Thirumurugan R, Babu B, Anitha K, Chandrasekaran J. Structural, optical, thermal, mechanical, dielectric and laser damage threshold studies of a succinate salt of creatinine for nonlinear optical applications. Materials Letters, 2016, 185: 214–217
CrossRef
Google scholar
|
[19] |
Mythili P, Kanagasekaran T, Sharma S N, Gopalakrishnan R. Growth and characterization of sodium sulfanilate dihydrate (SSDH) crystals for NLO applications. Journal of Crystal Growth, 2007, 306(2): 344–350
CrossRef
Google scholar
|
[20] |
Hanumantha Rao R, Kalainathan S. Microhardness, chemical etching, SEM, AFM and SHG studies of novel nonlinear optical crystal–l-threonine formate. Materials Research Bulletin, 2012, 47(4): 987–992
CrossRef
Google scholar
|
[21] |
Singh P, Hasmuddin M, Shakir M, Vijayan N, Abdullah M M, Ganesh V, Wahab M A. Investigation on structural, optical, thermal, mechanical and dielectric properties of l-proline cadmium chloride monohydrate single crystals: an efficient NLO material. Materials Chemistry and Physics, 2013, 142(1): 154–164
CrossRef
Google scholar
|
[22] |
Gupta V, Bamzai K K, Kotru P N, Wanklyn B M. Mechanical characteristics of flux-grown calcium titanate and nickel titanate crystals. Materials Chemistry and Physics, 2005, 89(1): 64–71
CrossRef
Google scholar
|
[23] |
Jain A, Razdan A K, Kotru P N, Wanklyn B M. Load and directional effects on microhardness and estimation of toughness and brittleness for flux-grown LaBO3 crystals. Journal of Materials Science, 1994, 29(14): 3847–3856
CrossRef
Google scholar
|
[24] |
Cahoon J P, Broughton W H, Kutzuk A R. The determination of yield strength from hardness measurements. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 1971, 2(7): 1979–1983
|
[25] |
Townsend D, Field J E. Fracture toughness and hardness of zinc sulphide as a function of grain size. Journal of Materials Science, 1990, 25(2): 1347–1352
CrossRef
Google scholar
|
/
〈 | 〉 |