Off-axis two-mirror laser communication antenna designed using differential equations

Chunqiu XIA, Xing ZHONG

PDF(406 KB)
PDF(406 KB)
Front. Optoelectron. ›› 2017, Vol. 10 ›› Issue (2) : 166-173. DOI: 10.1007/s12200-017-0710-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Off-axis two-mirror laser communication antenna designed using differential equations

Author information +
History +

Abstract

In satellite laser communication technology, which is built between planets and between a planet and the Earth, the optical antenna is the key point. Thus, research on optical system design is important. The off-axis reflective system has no obscuration and hence possesses a high efficiency for energy transfer. This study proposes a novel method for designing a free-form off-axis reflective imaging system. This study also introduces differential equations that depend on Fermat’s principle and sine condition. Finally, a free-form off-axis two-mirror optical system was designed by using the differential equation method. This system includes one intermediate image plane, in which the field of view (FOV) is −5° to −4° in the y-axis and −1° to 0° in the x-axis. The modulation transfer function was greater than 0.7 at 50 lp/mm, and the efficiency of energy transmission was high. The free-form off-axis two-mirror optical system involves a wide range of application prospects in the optical antenna used in the satellite laser communication systems. Moreover, the design method that used differential equations was proven simple and effective.

Keywords

optical antenna design / off-axis reflective system / satellite laser communication

Cite this article

Download citation ▾
Chunqiu XIA, Xing ZHONG. Off-axis two-mirror laser communication antenna designed using differential equations. Front. Optoelectron., 2017, 10(2): 166‒173 https://doi.org/10.1007/s12200-017-0710-z

References

[1]
Zhang Z, Xin Y, Yang B. The application of self-adaptation optics on space optical sensors. Spacecraft Recovery of Remote Sensing, 2000, 10(3): 23–29
[2]
Duchmann O, Planche G. How to meet intersatellite links mission requirements by an adequate optical terminal design. Proceedings of the Society for Photo-Instrumentation Engineers, 1991, 1417: 30–41
CrossRef Google scholar
[3]
Xing Z, Guang J. Design of extra wide short wave infrared spectral imager’s fore-optics. Acta Optica Sinica, 2012, 32(10): 1022004
CrossRef Google scholar
[4]
Rodgers J M. Unobscured mirror designs. Proceedings of the Society for Photo-Instrumentation Engineers, 2002, 4832: 33–60
CrossRef Google scholar
[5]
Rodgers J M. Aberrations of unobscured reflective optical systems. Dissertation for the Doctoral Degree. Tucson: University of Arizona, 1983
[6]
Hui L, Li X, Pei Y, Ming P. Design of off-axis three-mirror optical system. Laser & Optoelectronics Progress, 2008, 10(12): 59–63
[7]
Guo Y, Li Y, Liang T, Chen Q. Optical design of the uncoaxial three-mirror system with wide field of view. Acta Optica Sinica, 2010, 30(9): 2680–2683
CrossRef Google scholar
[8]
Wu H, Wang P. Designs of reflective off-axis system. Opto-Electronic Engineering, 2006, 33(1): 34–37
[9]
Yang T, Zhu J, Jin G. Design of freeform imaging systems with linear field-of-view using a construction and iteration process. Optics Express, 2014, 22(3): 3362–3374
CrossRef Pubmed Google scholar
[10]
Yang T, Zhu J, Wu X, Jin G. Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method. Optics Express, 2015, 23(8): 10233–10246
CrossRef Pubmed Google scholar
[11]
Nie Y, Thienpont H, Duerr F. Multi-fields direct design approach in 3D: calculating a two-surface freeform lens with an entrance pupil for line imaging systems. Optics Express, 2015, 23(26): 34042–34054
CrossRef Pubmed Google scholar
[12]
Shealy D L, Wang C, Jiang W, Jin L, Hoover R B. Design and analysis of a fast two-mirrorsoft-x-ray microscope. In: Proceedings of SPIE- The International Society for Optical Engineering, 1992, 1741
[13]
Semin V A. Calculating aspheric surfaces by modelling an optical system by means of differential equations. Journal of Optical Technology, 1999, 66(3): 247–251
CrossRef Google scholar
[14]
Xia C Q, Xing Z, Guang J. Design of the off-axis four mirrors system by differential equations. Acta Optica Sinica, 2015, 35(9): 0922002
[15]
Meng Q, Wang W, Ma H, Dong J. Easy-aligned off-axis three-mirror system with wide field of view using freeform surface based on integration of primary and tertiary mirror. Applied Optics, 2014, 53(14): 3028–3034
CrossRef Pubmed Google scholar
[16]
Guo J, Sun J, Shao M, Hu H. Calculation of focal length for off-axis TMA aerospace mapping camera. Optics and Precision Engineering., 2012, 20(8): 1754–1758
CrossRef Google scholar

Acknowledgements

This study was supported by the Youth Innovation Promotion Association, Chinese Academy of Sciences and the National Science Foundation for Young Scholars of China (Grant No. 61505203).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(406 KB)

Accesses

Citations

Detail

Sections
Recommended

/