Design and simulation to improve the structural efficiency of green light emission of GaN/InGaN/AlGaN light emitting diode

Sakhawat HUSSAIN, Tasnim ZERIN, Md. Ashik KHAN

Front. Optoelectron. ›› 2017, Vol. 10 ›› Issue (4) : 370-377.

PDF(196 KB)
Front. Optoelectron. All Journals
PDF(196 KB)
Front. Optoelectron. ›› 2017, Vol. 10 ›› Issue (4) : 370-377. DOI: 10.1007/s12200-017-0705-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Design and simulation to improve the structural efficiency of green light emission of GaN/InGaN/AlGaN light emitting diode

Author information +
History +

Abstract

This study considered the design of an efficient, high brightness polar InGaN/GaN light emitting diode (LED) structure with AlGaN capping layer for green light emission. The deposition of high In (>15%) composition within InGaN quantum well (QW) has limitations when providing intense green light. To design an effective model for a highly efficient InGaN green LEDs, this study considered the compositions of indium and aluminum for InxGa1−xN QW and AlyGa1−yN cap layers, along with different layer thicknesses of well, barrier and cap. These structural properties significantly affect different properties. For example, these properties affect electric fields of layers, polarization, overall elastic stress energy and lattice parameter of the structure, emission wavelength, and intensity of the emitted light. Three models with different composition and layer thicknesses are simulated and analyzed to obtain green light with in-plane equilibrium lattice parameter close to GaN (3.189 Å ) with the highest oscillator strength values. A structure model is obtained with an oscillator strength value of 1.18×10−1 and least in-plane equilibrium lattice constant of 3.218 Å. This emitter can emit at a wavelength of 540 nm, which is the expected design for the fabrication of highly efficient, bright green LEDs.

Keywords

green light emitting diode (LED) / lattice parameter / oscillator strength / InGaN quantum well (QW) / AlGaN capping layer

Cite this article

Download citation ▾
Sakhawat HUSSAIN, Tasnim ZERIN, Md. Ashik KHAN. Design and simulation to improve the structural efficiency of green light emission of GaN/InGaN/AlGaN light emitting diode. Front. Optoelectron., 2017, 10(4): 370‒377 https://doi.org/10.1007/s12200-017-0705-9

1 1 Introduction

The pulsed CO2 laser produced tin droplet plasma extreme ultraviolet (EUV) sources will be used in high volume manufacturing (HVM) in semiconductor industry [1]; the demand for mask inspection and spectral metrology EUV sources has also increased [2]. At present, the EUV light source technology for lithography requires that the micron-sized tin droplet target [3] must be highly synchronized with the pre-pulse and the main pulse in time and space [4], resulting in a relatively complicated technique and not suitable for measurement and mask inspection [5]. Discharge produced plasma (DPP) EUV sources have the potential use in mask inspection application with higher wall-plug efficiency and simple structure. After years of research, DPP light source has developed into a laser induced discharge plasma (LDP) light source [6]. Since 2003, Phillips and XTREME Technologies GmbH [7] set up a new kind of LDP source, LDP has made great progress especially after using the Sn-coated rotating disc electrodes [8]. LDP combines the advantages of high stability of DPP and power scalability of laser-produced plasma (LPP) [9]. It shows properties of high brightness, simple structure and low cost [10], and becomes a promising technology in the fields of mask inspection [11] and spectral metrology [12,13]. In 2014, Ushio [14] achieved a peak brightness of 145€W/(mm2·sr) using Sn LDP EUV source. In 2017, the peak brightness reached 225€W/(mm2·sr) and an average brightness of 145€W/(mm2·sr) was obtained at a maximum discharge frequency of 9.5 kHz [15].
The optical spectrum characterization of laser induced discharge plasma can provide information on the plasma ionization balance, rate processes and the density and temperature, while optical emission spectrometry (OES) is an effective and simple way to obtain the plasma parameter. OES has good space-time resolution and measurement reliability. It has been used to investigate the laser produced Sn plasma EUV source for many years. In 2010, Shaikh et al. [16] showed the electron temperature and electron density from Sn plasma produced by a CO2 laser would be lower than the results using a neodymium-doped yttrium aluminum garnet laser in a similar parameter regime. In 2013, Wu et al. [17] measured the spectral, spatial, and temporal emission characteristic of tin LPP. However, few works had been done to the analysis of the discharge produced plasma characteristics of Sn target. In 2004, Kieft et al. [18,19] presented time-resolved measurements of Stark broadened linewidth in a pulsed tin discharge experiment and recorded the variations of the four Sn III lines from 522 to 533 nm. They found the electron density increased from 1023 m-3 before discharge to 1024 m-3 after discharge began and decreased to 1022 m-3 during the decay of plasma. In 2011, Zhu et al. [20] used a modified Stark broadening method to investigate the spatial-resolved evolutions of electron temperature and density after the maximum implosion of discharge. In 2014, Tobin [21] presented his optical and EUV studies of laser triggered Z-pinch discharge which showed a temperature of about 6.1 eV and a density of 8.3 × 1018 cm-3 at a delay time following the maximum discharge current.
In this paper, we presented a complete analysis of the optical emission features of CO2 laser induced discharge tin plasma, and time-resolved measurements of the emission spectrums of plasma in visible spectral regions have been observed. The relation of lines intensity with discharge voltage has been investigated. Line intensities from the same ionization stage of Sn species are used in the Boltzmann plot for determining electron temperature, while electron densities are calculated using the Stark broadening method. The temporal evolution of electron temperature and density at different discharge voltage has been analyzed. The EUV spectrums of various discharge voltage were obtained.

2 2 Experimental details

The experimental device is shown in Fig. 1, and the vacuum chamber maintained the pressure at 1 × 10-3 Pa by mechanical pump and turbo pump. A stainless steel cone is used as the anode. Its angle was 60° and bottom diameter was 10 mm. The cathode was a tin disc with 4 cm in diameter and 3 mm in thickness. The discharge current was sustained with a 250 nF capacitor. The voltage varied from 0 to 17 kV. The gap between two electrodes was 6 mm.
Fig.1 LDP OES and EUV spectra detection experimental setup

Full size|PPT slide

The energy of the pulsed CO2 laser was about 145 mJ, the full width at half maxima (FWHM) of the pulse was 90 ns and the repetition rate was 1 Hz. Laser was focused on the cathode surface through a lens with focal length of 150 mm, the diameter of spot size was 300 mm and the maximum power density was 3 GW/cm2. An initial plasma produced by laser caused the breakdown between two electrodes. The voltage between electrodes was measured by a high voltage probe (Tektronix P6015A, × 1000, 3.0 pF, 100 MW) and the current was measured by a current monitor (Pearson 4997, 0.01 Volts/Amp), both were connected to the oscilloscope.
A visible spectrometer (Acton, SpectraPro-2750) was perpendicular to the discharge axis and collected the visible spectra radially produced by the plasmas. The spectrometer with a grating groove density of 300 lines/mm was connected to an intensified charge-coupled device (ICCD) camera (Princeton Instrument, PI-MAX-1300). It can realize the digital accurate scanning in the wavelength range of 300‒700 nm and the spectral resolution was 0.088 nm.
The camera gate was set to 10 ns and the delay interval was set to 100 ns. The laser signal was detected by a photodiode to trigger the ICCD camera. With different delays, the visible spectra at different stages of discharge were obtained. A standard spectral lamp was used to calibrate the wavelength, there was a relationship between the spectra wavelength l and the number of CCD cells X, as shown in Eq. (1). Some characteristic spectral lines were found in the NIST database (Hg 546.08, 576.96, 579.07 nm, etc.), and the coefficients A, B and C could be determined.
λ'=A+BX+CX2.
And a tungsten lamp was used to find out the spectral responsivity h , as shown in Eq. (2). Here Imeasured was the measured intensity and Ilamp was the standard intensity offered by the product manual at each wavelength.
η'=Imeasured/Ilamp.
An EUV spectrometer was perpendicular to the discharge axis. The spectrometer consisted of a zirconium (Zr) film, a spherical reflector, a planar mirror, a slit, a variable pitch concave grating, a thermoelectrically cooled back-illumination X-ray CCD camera (Princeton Instrucments-SX:400) and the vacuum system. The thickness of Zr film was 500 nm. Its transmittance was about 20% in the wavelength range from 6 to 18 nm. Suppose l is the wavelength of the light to be measured, the diffraction angle is b, d is the grating constant, a = 87° is the incident angle, and m = 1 is the diffraction order. According to the grating Eq. (3),
d(sinαsinβ)=mλ.
Here the position on the CCD is x, and L is the distance between the grating and the CCD plane. We can get Eq. (4).
λ=d{sin87sin[arccot(cotβ+xx0L)]}.
As long as the relative positions of the unknown spectral line l and the known spectral line l0 on the CCD were determined, the wavelengths could be calibrated. The X-ray less than 6 nm was almost absorbed by Zr film, and a sharp absorption boundary could be formed at 6 nm, so the calibration could be realized through the position of absorption boundary x0.

3 3 Results and discussion

3.1 3.1 Emission spectroscopy diagnosis

When the voltage was 8.0 kV, the waveforms of discharge voltage and current were shown in Fig. 2(a); the electrodes breakdown occurred at 0 ns, then the voltage dropped to zero after about 1000 ns and the current reached the first peak after about 1350 ns. The 300 lines/mm grating was chosen, and 535 nm was selected as the central wavelength. The OESs of 480–590 nm were shown in Figs. 2(b)–2(d) corresponding to the spectra at different times during the discharge. The visible light lines mainly came from neutral (563.17, 575.36 nm, etc.), singly ionized (533.39, 556.19, 558.89, 579.92 nm, etc.) and doubly ionized tin (522.6, 529.3, 535.1, 537.1 nm, etc.) [22]. From 200 to 800 ns, the current increased and tin emission lines became stronger due to the ablation of target and joule heat heating, especially the intensities of Sn III lines. New tin atomic spectra lines such as Sn I 563.2 and 575.6 nm appeared apparently due to the recombination of high valence ions. From 800 to 2000 ns, tin emission lines became weaker with the decrease of current, and the new tin atomic spectra lines disappeared again. Intensities of the Sn III lines decreased more than that of the Sn II lines. With the decrease of current, fewer Sn particles were supplied, and the plasma expanded which induced large quantities of high valence ions lost energy and returned to the low valence states.
Fig.2 (a) Waveforms of the discharge voltage and current; and laser induced discharge visible spectra at different times: (b) 200 ns; (c) 800 ns; (d) 2000 ns

Full size|PPT slide

Fig.3 LDP visible spectra with different voltages

Full size|PPT slide

With different voltages, the LDP spectra were shown as Fig. 3. 800 ns after the discharge, the LDP spectra emission lines with higher voltage owned stronger intensities and wider broadening. The differences of singly ionized tin lines broadenings and shifts were more obvious than that of the doubly ionized tin lines and atomic tin lines. According to the widely used semi-empirical equations advanced by Griem [23], the Stark widths and the absolute value of line shifts are related with electron temperature and density.
Fig.4 (a) Boltzmann plot for electron temperature calculating; (b) electron temperatures and current waveforms versus time under different condition of discharge voltage

Full size|PPT slide

Here we assumed the plasma was in the local thermal equilibrium (LTE), so the numbers of Sn atoms and ions in different states satisfied the Boltzmann distribution, and the electron density and the ion density satisfied the Saha equation. Considering two lines at the same charge states, the electron temperature was estimated by the Boltzmann plot, shown as Eq. (5) [24]. The differences of excitation energies should be large enough to ensure the accuracy of electron temperature, here five lines of Sn II: 556.19, 558.89, 579.92, 645.35 and 684.40 nm were chosen. When the voltage was 8.0 kV, the Boltzmann plot was shown in Fig. 4(a).
ln(I1λ1A1g1)ln(I2λ2A2g2)=E1E2kBTe.
Here Ii was the intensity of the line, gi was the energy level degeneracy, Ai was the transition probability, Ei was the excitation energy of the upper level, kB was the Boltzmann constant. The black dots represented the experimental data and the red line was the linear fitting plot, the slope of the fitting line reflected the electron temperature. At 500 ns, the electron temperature was about 2.1 eV.
The electron temperatures were shown in Fig. 4(b). In the first 300 ns, the electron temperature dropped a little bit due to the dissipation of laser plasma and the incomplete development of discharge plasma. Then the electron temperature reached the peak at about 1400 ns and then decreased after the current peak.
Fig.5 (a) Voigt line fitting of Stark broadening for electron density calculating; (b) electron densities and current waveforms versus time under different condition of discharge voltage

Full size|PPT slide

When the voltage was 15.0 kV, at 900 ns, the Voigt fitting of Sn II 579.92 nm line is shown in Fig. 5(a). The relationship between the FWHM of a Stark-broadened line and the electron density is given by Eq. (6) [25], where W was the electron-impact parameter [26].
Δλ1/2=2W(ne1016).
The variation of electron density was shown in Fig. 5(b). The lines represented the currents, and the dots represented the electron densities when the voltages were 8 and 15 kV. The variation trend of electron density was similar to that of the electron temperature, except that the density reached maximum not exactly the moment of current peak but a few hundred nanoseconds earlier. It could be explained by the construction of plasmas. After the breakdown, the diameter of the plasma column varied with the current. The variation of the diameter was influenced by the plasma thermal expansion pressure and the magnetic compression pressure. In the beginning, the expansion pressure was greater than the magnetic compression pressure, the plasma expanded. With the increase of current, the magnetic compression pressure became greater than the expansion pressure, the pinch of plasma appeared before the current reached the maximum. And the moment of maximum density might appear after the pinch of plasma [27].
Fig.6 Average ionized states with different voltages

Full size|PPT slide

With the known electron temperatures and densities, an approximate Eq. (7) [28] could be used to estimate the average ionized state Z, the constant D was 4.8 × 1024 cm-3(106 K)-3/2, Z0 was the atomic number, here Z0 = 50 for tin.
Z=Z0{1exp[4.115(TeZ043lnDTe32ne1.16×104)0.625]}0.5.
The average ionized states were influenced by electron temperature and density, however the electron temperature seemed to play a major role. As shown in Fig. 6, the average ionized state reached its maximum during the current peak. A higher average ion charge state meant more Sn7+13+ ions were produced which meant the strongest EUV radiation was at the moment of maximum current. A higher voltage brought plasma with a higher average ionized state, which facilitated the generation of EUV in 13.5 nm.

3.2 3.2 LDP EUV spectra

The LPP EUV spectra were not obtained with only laser and without discharge voltages. The LDP EUV spectra at different discharge voltages from 7 to 17 kV were shown in Fig. 7. The Y axis units were the X-ray CCD counts which represented the relative intensity. When the voltage was higher than 7 kV, the spectra began to exhibit a strong peak between 13 to 14 nm. With the increase of voltage, the EUV intensity increased. The relationship of EUV spectral integral intensity and injected energy was plotted as shown in Fig. 8. The total discharge energy was equal to 0.5CU2, here C was the capacitance and U was the voltage. The spectral intensity means the integral intensity of spectrum in 13.5 nm with 2% bandwidth which represented the relative strength of EUV. With the increase of energy from 0.8 to 10.2 J, the integral intensity increased almost linearly. It showed that the EUV emission was closely related to the discharge energy. As mentioned above, the higher voltages brought plasmas with higher temperatures and densities and ionized states which were helpful to the emission of EUV.
Fig.7 LPP EUV spectra with different voltages

Full size|PPT slide

Fig.8 Relationship between solid Sn EUV spectral intensity and discharge energy

Full size|PPT slide

The conversion efficiency of EUV radiation is roughly estimated. The conversion efficiency (CE) was defined as the ratio of the sum of photon energy QEUV (with a central wavelength of 13.5 nm and a bandwidth of 2%) to the sum of laser energy Qlaser and capacitive storage energy Qdischarge, as shown in Eq. (8).
CE=QEUVQlaser+Qdischarge=Nhcλη1η2η3η4(Qlaser+Qdischarge),
where h was the Planck constant, c was the light speed, h1 was the product of reflectance of spherical mirror, plane mirror, grating and transmittance of Zr film, h2 was the first-order diffraction efficiency of grating, h3 was the acceptance percentage of the spherical mirror, h4 was the quantum efficiency of CCD and N was total photon number in bandwidth. With the increase of voltage, the EUV CE also improved and the CE was 0.15% when the discharge voltage was 15 kV.

4 4 Conclusions

In this paper, the solid tin was used to investigate LDP EUV source with different voltages. Under the condition of 145 mJ laser energy and 6 mm gap, we obtained the LDP visible spectra and EUV spectra.
The visible spectra mainly consisted of neutral, singly ionized, and doubly ionized Sn. The intensity of emission lines, electron temperature, electron density and average ionized states all rose with the increase of current and then reduced with the decrease of current. The initial laser produced plasma had an electron temperature of about 2 eV and a density of about 2 × 1017 cm-3. With the heating of current, the density and temperature of plasma increased further. When the voltage was 15 kV, the highest electron temperature was 6.32 eV at the current peak and the highest electron density was 1.16 × 1018 cm-3 a few hundreds of nanoseconds before the current peak.
The plasma radiation was related to the electron temperature. A higher temperature meant more Sn7+13+ ions were produced which helped the 13.5 nm in-band radiation. It was concluded the strongest EUV emission was at the moment of current peak. For the Sn EUV source, the spectra showed a strong peak between 13 and 14 nm when the voltage was higher than 7 kV. With the increase of voltage, the EUV spectral intensity and CE both increased. Increasing the discharge voltage was a simple way to increase the EUV output, but under our current experimental conditions, the current rising rate was a bit slow and the plasma was not concentrated effectively, so the EUV CE and energy utilization were not high enough, it should be improved in our future work.

References

[1]
Nakamura S, Fasol  G. The Blue Laser Diode. Berlin: Springer, 1997
[2]
Krames M R, Shchekin  O B, Mueller-Mach  R, Mueller G O ,  Zhou L, Harbers  G, Craford M G . Status and future of high-power light-emitting diodes for solid-statelighting. Journal of Display Technology, 2007, 3(2): 160–175
CrossRef Google scholar
[3]
Narukawa Y, Ichikawa  M, Sanga D ,  Sano M, Mukai  T. White light emitting diodes with super-high luminous efficacy. Journal of Physics D, Applied Physics, 2010, 43(35): 354002
CrossRef Google scholar
[4]
Crawford M H. LEDs for solid-state lighting: performance challengesand recent advances. IEEE Journal of SelectedTopics in Quantum Electronics, 2009, 15(4): 1028–1040
CrossRef Google scholar
[5]
Langer T, Kruse  A, Ketzer FA ,  Schwiegel A ,  Hoffmann L ,  Jönen H ,  Bremers H ,  Rossow U ,  Hangleiter A . Origin of the “green gap”: increasing nonradiativerecombination in indium-rich GaInN/GaN quantum well structures. Physica Status Solidi (C), 2011, 8(7−8): 2170–2172 
CrossRef Google scholar
[6]
Zhu M, You  S, Detchprohm T ,  Paskova T ,  Preble E A ,  Wetzel C . Various misfit dislocations in greenand yellow GaInN/GaN light emitting diodes. Physica Status Solidi (A), 2010, 207(6): 1305–1308
[7]
Tessarek C, Figge  S, Aschenbrenner T ,  Bley S, Rosenauer  A, Seyfried M ,  Kalden J ,  Sebald K ,  Gutowski J ,  Hommel D . Strong phase separation of strained InxGa1−xN layers due to spinodal and binodal decomposition: Formation ofstable quantum dots. Physical Review B:Condensed Matter and Materials Physics, 2011, 83(11): 115316
CrossRef Google scholar
[8]
Qi Y D, Liang  H, Wang D ,  Lu Z D ,  Tang W, Lau  K M. Comparison of blue and green InGaN/GaN multiple-quantum-welllight-emitting diodes grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 2005, 86(10): 101903
CrossRef Google scholar
[9]
Na J H, Taylor  R A, Lee  K H, Wang  T, Tahraoui A ,  Parbrook P ,  Fox A M ,  Yi S N ,  Park Y S ,  Choi J W ,  Lee J S . Dependence of carrier localization in InGaN/GaN multiple-quantumwells on well thickness. Applied Physics Letters, 2006, 89(25): 253120
CrossRef Google scholar
[10]
Sato H, Tyagi  A, Zhong H ,  Fellows N ,  Chung R B ,  Saito M ,  Fujito K ,  Speck J S ,  DenBaars S P ,  Nakamura S . High power and high efficiencygreen light emitting diode on free-standing semipolar (112) bulk GaN substrate.  Physica Status Solidi (RRL) – Rapid Research Letters, 2007, 1(4): 162–164
[11]
Schwarz U T, Kneissl  M. Nitride emitters go nonpolar.  Physica Status Solidi (RRL) – Rapid Research Letters, 2007, 1(3): A44–A46
[12]
El-Masry N A, Piner  E L, Liu  S X, Bedair  S M. Phase separation in InGaN grown by metalorganic chemical vapor deposition. Applied Physics Letters, 1998, 72(1): 40–42
CrossRef Google scholar
[13]
Pristovsek M, Kadir  A, Meissner C ,  Schwaner T ,  Leyer M ,  Kneissl M . Surface transition induced island formation on thin strainedInGaN layers on GaN (0001) in metal-organic vapour phase epitaxy. Journal of Applied Physics, 2011, 110(7): 073527
CrossRef Google scholar
[14]
Adachi M. InGaN based green laser diodes on semipolar GaN substrate. Japanese Journal of Applied Physics, 2014, 53(10): 100207
CrossRef Google scholar
[15]
Koslow I L, Hardy  M T, Shan Hsu  P, Dang P Y ,  Wu F, Romanov  A, Wu Y R ,  Young E C ,  Nakamura S ,  Speck J S ,  DenBaars S P . Performance and polarization effects in (112) long wavelength light emitting diodes grown on stressrelaxed InGaN buffer layers. Applied Physics Letters, 2012, 101(12): 121106
CrossRef Google scholar
[16]
Strauß U, Avramescu  A, Lermer T ,  Queren D ,  Gomez-Iglesias A ,  Eichler C ,  Müller J ,  Brüderl G ,  Lutgen S . Pros and cons of green InGaNlaser on c-plane GaN. Physica Status Solidi (B), 2011, 248(3): 652–657
[17]
Arif R A, Ee  Y K, Tansu  N. Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of lightemitting diodes. Applied Physics Letters, 2007, 91(9): 091110
CrossRef Google scholar
[18]
Zhao H, Tansu  N. Optical gain characteristics of staggered InGaN quantum wells lasers. Journal of Applied Physics, 2010, 107(11): 113110
CrossRef Google scholar
[19]
Han S H, Cho  C Y, Lee  S J, Park  T Y, Kim  T H, Park  S H, Won Kang  S, Won Kim J ,  Kim Y C ,  Park S J . Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on opticalpower of light-emitting diodes. Applied Physics Letters, 2010, 96(5):  051113
CrossRef Google scholar
[20]
Shioda T, Yoshida  H, Tachibana K ,  Sugiyama N ,  Nunoue S . Enhanced lightoutput power of green LEDs employing AlGaN interlayer in InGaN/GaNMQW structure on sapphire (0001) substrate. Physica Status Solidi (A), 2012, 209(3): 473–476
[21]
Lefebvre P, Taliercio  T, Morel A ,  Allègre J ,  Gallart M ,  Gil B, Mathieu  H, Damilano B ,  Grandjean N ,  Massies J . Effects of GaAlN barriers and of dimensionality on opticalrecombination processes in InGaN quantum wells and quantum boxes. Applied Physics Letters, 2001, 78(11): 1538–1540
CrossRef Google scholar
[22]
Lu H M, Chen  G X. Design strategies for mitigating the influence of polarization effects on GaN-basedmultiple quantum well light-emitting diodes. Journal of Applied Physics, 2011, 109(9): 093102
CrossRef Google scholar
[23]
Zhao H, Arif  R A, Ee  Y K, Tansu  N. Self-consistent analysis of strain-compensated InGaN-AlGaN quantumwells for lasers and light-emitting diodes. IEEE Journal of Quantum Electronics, 2009, 45(1): 66–78
CrossRef Google scholar
[24]
Tsai C L, Fan  G C, Lee  Y S. Effects of strain-compensated AlGaN/InGaNsuperlattice barriers on the optical properties of InGaN light-emittingdiodes. Applied Physics A, Materials Science& Processing, 2011, 104(1): 319–323
CrossRef Google scholar
[25]
Koleske D D, Fischer  A J, Bryant  B N, Kotula  P G, Wierer  J J. On the increased efficiency in InGaN-based multiple quantum wells emitting at 530–590nm with AlGaN interlayers. Journal of Crystal Growth, 2015, 415: 57–64
CrossRef Google scholar
[26]
Saito S, Hashimoto  R, Hwang J ,  Nunoue S . InGaN light-emitting diodes on c-face sapphire substratesin green gap spectral range. Applied Physics Express, 2013, 6(11): 111004
CrossRef Google scholar
[27]
Hwang J I, Hashimoto  R, Saito S ,  Nunoue S . Development of InGaN-based red LED grown on (0001) polarsurface. Applied Physics Express, 2014, 7(7): 071003
CrossRef Google scholar
[28]
Doi T, Honda  Y, Yamaguchi M ,  Amano H . Strain-compensated effect on the growth of InGaN/AlGaN multi-quantumwell by metalorganic vapor phase epitaxy. Japanese Journal of Applied Physics, 2013, 52(8S): 08JB14
CrossRef Google scholar
[29]
Damilano B, Kim-Chauveau  H, Frayssinet E ,  Brault J ,  Hussain S ,  Lekhal K ,  Vennéguès P ,  Mierry P D ,  Massies J . Metal organic vapor phase epitaxy of monolithic two-color light-emittingdiodes using an InGaN-based light converter. Applied Physics Express, 2013, 6(9): 092105
CrossRef Google scholar
[30]
Lekhal K, Damilano  B, Ngo H T ,  Rosales D ,  Mierry P D ,  Hussain S ,  Vennéguès P ,  Gil B. Strain-compensated (Ga,In)N/(Al,Ga)N/GaNmultiple quantum wells for improved yellow/amber light emission. Applied Physics Letters, 2015, 106(14): 142101
CrossRef Google scholar
[31]
Damilano B, Gil  B. Yellow–red emission from (Ga,In)N heterostructures. Journal of Physics D, Applied Physics, 2015, 48(40): 403001
CrossRef Google scholar
[32]
Lekhal K, Hussain  S, Mierry P D ,  Vennéguès P ,  Nemoz M ,  Chauveau J M ,  Damilano B . Optimized In compositionand quantum well thickness for yellow-emitting (Ga,In)N/GaN multiplequantum wells. Journal of Crystal Growth, 2016, 434: 25–29
CrossRef Google scholar
[33]
Thränhardt A, Ell  C, Khitrova G ,  Gibbs H M . Relation between dipole moment and radiative lifetimein interface fluctuation quantum dots. Physical Review B: Condensed Matter and Materials Physics, 2002, 65(3): 035327
CrossRef Google scholar
[34]
Bretagnon T, Lefebvre  P, Valvin P ,  Bardoux R ,  Guillet T ,  Taliercio T ,  Gil B, Grandjean  N, Semond F ,  Damilano B ,  Dussaigne A ,  Massies J . Radiative lifetime of a singleelectron-hole pair in GaN/ AlN quantum dots. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(11): 113304
CrossRef Google scholar
[35]
Narukawa Y, Sano  M, Ichikawa M ,  Minato S ,  Sakamoto T ,  Yamada T ,  Mukai T . Improvement of luminous efficiency in white light emitting diodes by reducinga forward-bias voltage. Japanese Journalof Applied Physics, 2007, 46(40): L963–L965
CrossRef Google scholar
[36]
Meneghini M, Tazzoli  A, Mura G ,  Meneghesso G ,  Zanoni E . A review onthe physical mechanisms that limit the reliability of GaN-based LEDs. IEEE Transactions on Electron Devices, 2010, 57(1): 108–118
CrossRef Google scholar
[37]
Bernardini F, Fiorentini  V, Vanderbilt D . Spontaneous polarizationand piezoelectric constants of III-V nitrides. Physical Review B: Condensed Matter and Materials Physics, 1997, 56(16): R10024–R10027
CrossRef Google scholar
[38]
Bernardini F, Fiorentini  V. First-principles calculation of the piezoelectric tensor d of III–Vnitrides. Applied Physics Letters, 2002, 80(22): 4145–4147
CrossRef Google scholar
[39]
Bernardini F, Fiorentini  V. Polarization fields in nitride nanostructures: 10 points to thinkabout. Applied Surface Science, 2000, 166(1–4): 23–29
CrossRef Google scholar
[40]
Nikolaev V V, Portnoi  M E, Eliashevich  I. Photon recycling white light emitting diode based on InGaN multiple quantum well heterostructure. Physica Status Solidi (A), 2001, 183(1): 177–182

Acknowledgements

The authors thank Dr. Benjamin Damilano andMr. Philippe Vennéguès, Centre de Recherche sur l’H´et´ero-Epitaxieet ses Applications (CRHEA), Centre National de la Recherche Scientifique(CNRS), Valbonne 06560, France for their support.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(196 KB)

Accesses

Citations

Detail

Sections
Recommended

/