Slab Yb:YAG pulse amplifier with high amplification gain and signal-to-noise ratio

Jun LIU , Jianguo XIN , Ye LANG , Jiabin CHEN

Front. Optoelectron. ›› 2017, Vol. 10 ›› Issue (1) : 51 -56.

PDF (381KB)
Front. Optoelectron. ›› 2017, Vol. 10 ›› Issue (1) : 51 -56. DOI: 10.1007/s12200-017-0564-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Slab Yb:YAG pulse amplifier with high amplification gain and signal-to-noise ratio

Author information +
History +
PDF (381KB)

Abstract

This study experimentally investigated a Yb:YAG pulse laser amplifier with a high amplification gain and a high signal-to-noise ratio (SNR). The highest amplification gain of 172 and highest pulse energy of 131 mJ were obtained with the highest SNR of 24.9 dB from a volume gain of 10 mm × 10 mm × 1 mm. The output beam quality values of Mx 2=1.91 in the slow axis and My 2=1.58 in the fast axis were also achieved.

Keywords

laser amplifiers / ytterbium lasers / diode-pumped lasers / signal-to-noise ratio (SNR)

Cite this article

Download citation ▾
Jun LIU, Jianguo XIN, Ye LANG, Jiabin CHEN. Slab Yb:YAG pulse amplifier with high amplification gain and signal-to-noise ratio. Front. Optoelectron., 2017, 10(1): 51-56 DOI:10.1007/s12200-017-0564-4

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Experimental methods

The dual end-pumping configuration was applied in the experiments. The pump sources were two LD arrays, each with four bars and deliver an output peak power of 1200 W. The center wavelength was fixed at approximately 940 nm for Yb:YAG by maintaining the temperature of the cooling water at 23°C. The homogenization system of the pump light was the same as that utilized in Ref. []. The pumping peak power was 960 W after the homogenization system with 80% efficiency. A homogenous line pump light inside the Yb:YAG gain medium was obtained after the homogenization system. The dimensions of the pumping line were approximately 10 mm (x) × 0.4 mm (y). A quarter-wave plate with the Polarizer Rotation Mount (Beijing Huawei Haorun Instruments Co., Ltd) and a polarizer were set at the input end of the pulse amplifier, which was utilized to adjust the linear polarized input energy of a signal pulse laser. The input signal pulse laser originates from the LD pulse end-pumpedQ-switch Yb:YAG slab laser with a beam quality of M2 = 1.55 in the slow axis and M2 = 1.40 in the fast axis as shown in Ref. []. The input beam size of the amplifier was 0.49 mm in width (x-direction). The input signal pulse laser was injected just after the end of the pump pulse light with a DG535 Digital Delay and Pulse Generator (Stanford Research System, Inc.). The output beam size of the amplifier after seven paths was folded in the Yb:YAG gain medium was 5.85 mm in width. The mirrors M1 and M6 were placed at 45° to guide the input and output beams of the pulse laser amplifier. The pulse energy of the amplifier in the experiments was measured by a LE-3B laser energy meter (Beijing Physcience Opto-Electronics Co., Ltd).

Results and discussion

Conclusions

References

[1]

Lin HLi  JLiang X . 105 W,<10 ps, TEM00 laser output based on an in-band pumped Nd:YVO4 Innoslab amplifier. Optics Letters201237(13): 2634–2636

[2]

Russbueldt PHoffmann  DHofer M Lohring J Luttmann J Meissner A Weitenberg J Traub M Sartorius T Esser D Wester R Loosen P Poprawe R . Innoslab amplifiers. IEEE Journal of Selected Topics in Quantum Electronics201521(1): 447–463

[3]

Russbueldt PMans  TWeitenberg J Hoffmann H D Poprawe R . Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. Optics Letters201035(24): 4169–4171

[4]

Yu HBourdet  G. Different cooling configurations for a high average power longitudinally diode-pumped Yb:YAG amplifier. Applied Optics200645(24): 6205–6211

[5]

Zhu GZhu  XHuang Y Wang HZhu  C. Numerical analysis of an end-pumped Yb:YAG thin disk laser with variation of a fractional thermal load. Applied Optics201453(19): 4349–4358

[6]

Siebold MHein  JWandt C Klingebiel S Krausz F Karsch S . High-energy, diode-pumped, nanosecond Yb:YAG MOPA system. Optics Express200816(6): 3674–3679

[7]

Loeser MSiebold  MRoeser F Schramm U . High energy CPA-free picosecond Yb:YAG amplifier. In: Proceeding of Advanced Solid-State Photonics, OSA Technical Digest Series (CD). California: Optical Society of America, 2012, paper AM4A.16

[8]

Jun LJianguo  XYe L Jiabin C . Multiple folded resonator for LD pulse end pumped Q-switched Yb:YAG slab laser. Optics Express201422(18): 22157–22162

[9]

Ertel KBanerjee  SMason P D Phillips P J Siebold M Hernandez-Gomez C Collier J C . Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation. Optics Express201119(27): 26610–26626

[10]

Sekine TTakeuchi  YKurita T Hatano Y Muramatsu Y Mizuta Y Kabeya Y Tamaoki Y Kato Y. High gain, high efficiency cryogenic Yb:YAG ceramics amplifier for several hundred joules DPSSL. In: Proceeding of Advanced Solid State Lasers, OSA Technical Digest. Massachusetts: Optical Society of America, 2016, paper ATh4A. 1

[11]

Siebold MLoeser  MRoeser F Seltmann M Harzendorf G Tsybin I Linke S Banerjee S Mason P D Phillips P J Ertel K Collier J C Schramm U . High-energy, ceramic-disk Yb:LuAG laser amplifier. Optics Express201220(20): 21992–22000

[12]

Bourdet G L. Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror. Applied Optics200544(6): 1018–1027

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (381KB)

1760

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/