Subwavelength electromagnetics
Xiangang LUO
Subwavelength electromagnetics
Subwavelength electromagnetics is a discipline that deals with light-matter interaction at subwavelength scale and innovative technologies that control electromagnetic waves with subwavelength structures. Although the history can be dated back to almost one hundred years ago, the flourish of these researching areas have been no more than 30 years. In this paper, we gave a brief review of the history, current status and future trends of subwavelength electromagnetics. In particular, the milestones related with metamaterials, plasmonics, metasurfaces and photonic crystals are highlighted.
electromagnetics / subwavelength scale / metamaterials / plasmonics / photonic crystals
[1] |
Lorentz H A. Collected Papers. Hague, 1937
|
[2] |
Jackson J D. Classical Electrodynamics.Hoboken: Wiley, 1999
|
[3] |
Knott E F, Shaeffer J F, Tuley M T. Radar Cross Section.USA: SciTech Publishing, 2004
|
[4] |
Zhou B, Kane T J, Dixon G J, Byer R L. Efficient, frequency-stable laser-diode-pumped Nd:YAG laser. Optics Letters, 1985, 10(2): 62–64
CrossRef
Pubmed
Google scholar
|
[5] |
Gordon R G. Criteria for choosing transparent conductors. MRS Bulletin, 2000, 25(8): 52–57
CrossRef
Google scholar
|
[6] |
West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A. Searching for better plasmonic materials. Laser & Photonics Reviews, 2010, 4(6): 795–808
CrossRef
Google scholar
|
[7] |
De S, Coleman J N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano, 2010, 4(5): 2713–2720
CrossRef
Pubmed
Google scholar
|
[8] |
Feynman R P. There’s plenty of room at the bottom. Engineering and Science, 1960, 23: 22–36
|
[9] |
Brongersma M L. Introductory lecture: nanoplasmonics. Faraday Discussions, 2015, 178: 9–36
CrossRef
Pubmed
Google scholar
|
[10] |
Veselago V G. The electrodynamics of substances with simultaneously negative values of e and m. Soviet Physics- Uspekhi, 1968, 10(4): 509–514
CrossRef
Google scholar
|
[11] |
Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776
CrossRef
Pubmed
Google scholar
|
[12] |
Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
CrossRef
Google scholar
|
[13] |
Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187
CrossRef
Pubmed
Google scholar
|
[14] |
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
CrossRef
Pubmed
Google scholar
|
[15] |
Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
CrossRef
Pubmed
Google scholar
|
[16] |
Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782
CrossRef
Pubmed
Google scholar
|
[17] |
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
CrossRef
Pubmed
Google scholar
|
[18] |
Emerson D T. The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(12): 2267–2273
CrossRef
Google scholar
|
[19] |
Ritchie R H. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106(5): 874–881
CrossRef
Google scholar
|
[20] |
Luo X. Principles of electromagnetic waves in metasurfaces. Science China-Physics, Mechanics & Astronomy, 2015, 58(9): 594201
CrossRef
Google scholar
|
[21] |
Luo X, Pu M, Ma X, Li X. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. International Journal of Antennas and Propagation, 2015, 16: 204127
|
[22] |
Leonhardt U. Optical conformal mapping. Science, 2006, 312(5781): 1777–1780
CrossRef
Pubmed
Google scholar
|
[23] |
Valentine J, Li J, Zentgraf T, Bartal G, Zhang X. An optical cloak made of dielectrics. Nature Materials, 2009, 8(7): 568–571
CrossRef
Pubmed
Google scholar
|
[24] |
Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R. Broadband ground-plane cloak. Science, 2009, 323(5912): 366–369
CrossRef
Pubmed
Google scholar
|
[25] |
Gabrielli L H, Cardenas J, Poitras C B, Lipson M. Silicon nanostructure cloak operating at optical frequencies. Nature Photonics, 2009, 3(8): 461–463
CrossRef
Google scholar
|
[26] |
Hashemi H, Zhang B, Joannopoulos J D, Johnson S G. Delay-bandwidth and delay-loss limitations for cloaking of large objects. Physical Review Letters, 2010, 104(25): 253903
CrossRef
Pubmed
Google scholar
|
[27] |
Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking. Physical Review Letters, 2008, 101(20): 203901
CrossRef
Pubmed
Google scholar
|
[28] |
Zigoneanu L, Popa B I, Cummer S A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nature Materials, 2014, 13(4): 352–355
CrossRef
Pubmed
Google scholar
|
[29] |
Han T, Bai X, Gao D, Thong J T L, Li B, Qiu C W. Experimental demonstration of a bilayer thermal cloak. Physical Review Letters, 2014, 112(5): 054302
CrossRef
Pubmed
Google scholar
|
[30] |
Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science, 2015, 349(6254): 1310–1314
CrossRef
Pubmed
Google scholar
|
[31] |
Pu M, Zhao Z, Wang Y, Li X, Ma X, Hu C, Wang C, Huang C, Luo X. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Scientific Reports, 2015, 5: 9822
CrossRef
Pubmed
Google scholar
|
[32] |
Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X. Multispectral optical metasurfaces enabled by achromatic phase transition. Scientific Reports, 2015, 5: 15781
CrossRef
Pubmed
Google scholar
|
[33] |
Aieta F, Kats M A, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347(6228): 1342–1345
CrossRef
Pubmed
Google scholar
|
[34] |
Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686
CrossRef
Pubmed
Google scholar
|
[35] |
Jacob Z, Alekseyev L V, Narimanov E. Optical Hyperlens: far-field imaging beyond the diffraction limit. Optics Express, 2006, 14(18): 8247–8256
CrossRef
Pubmed
Google scholar
|
[36] |
Kildishev A V, Narimanov E E. Impedance-matched hyperlens. Optics Letters, 2007, 32(23): 3432–3434
CrossRef
Pubmed
Google scholar
|
[37] |
Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nature Photonics, 2013, 7(12): 948–957
CrossRef
Google scholar
|
[38] |
Liang G, Wang C, Zhao Z, Wang Y, Yao N, Gao P, Luo Y, Gao G, Zhao Q, Luo X. Squeezing bulk plasmon polaritons through hyperbolic metamaterial for large area deep subwavelength interference lithography. Advanced Optical Materials, 2015, 3(9): 1248–1256
CrossRef
Google scholar
|
[39] |
Engheta N. Thin absorbing screens using metamaterial surfaces. IEEE Antennas and Propagation Society International Symposium, 2002, 2: 392–395
|
[40] |
Sievenpiper D F, Schaffner J H, Song H J, Loo R Y, Tangonan G. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2713–2722
CrossRef
Google scholar
|
[41] |
Munk B A. Frequency Selective Surfaces.New York: Wiley, 2000
|
[42] |
Senior T. Approximate boundary conditions. IEEE Transactions on Antennas and Propagation, 1981, 29(5): 826–829
CrossRef
Google scholar
|
[43] |
Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces. Nature Photonics, 2014, 8(12): 889–898
CrossRef
Google scholar
|
[44] |
Salisbury W W. Absorbent body for electromagnetic waves. United States Patent, 1952, 2599944
|
[45] |
Sievenpiper D F. High-impedance electromagnetic surfaces. Dissertation for the Doctoral Degree. Los Angeles: University of California, 1999
|
[46] |
Pu M, Feng Q, Hu C, Luo X. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics, 2012, 7(4): 733–738
CrossRef
Google scholar
|
[47] |
Sievenpiper D, Zhang L, Broas R, Alexopolous N, Yablonovitch E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2059–2074
CrossRef
Google scholar
|
[48] |
Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
CrossRef
Pubmed
Google scholar
|
[49] |
Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X. Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Optics Express, 2011, 19(18): 17413–17420
CrossRef
Pubmed
Google scholar
|
[50] |
Vora A, Gwamuri J, Pala N, Kulkarni A, Pearce J M, Güney D Ö. Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Scientific Reports, 2014, 4: 4901
CrossRef
Pubmed
Google scholar
|
[51] |
Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104
CrossRef
Google scholar
|
[52] |
Feng Q, Pu M, Hu C, Luo X. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Optics Letters, 2012, 37(11): 2133–2135
CrossRef
Pubmed
Google scholar
|
[53] |
Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230–1234
CrossRef
Google scholar
|
[54] |
Brewitt-Taylor C R. Limitation on the bandwidth of artificial perfect magnetic conductor surfaces. IET Microwaves, Antennas & Propagation, 2007, 1(1): 255–260
|
[55] |
Pu M, Feng Q, Wang M, Hu C, Huang C, Ma X, Zhao Z, Wang C, Luo X. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Optics Express, 2012, 20(3): 2246–2254
CrossRef
Pubmed
Google scholar
|
[56] |
Li S, Luo J, Anwar S, Li S, Lu W, Hang Z H, Lai Y, Hou B, Shen M, Wang C. Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(22): 220301
CrossRef
Google scholar
|
[57] |
Li S, Duan Q, Li S, Yin Q, Lu W, Li L, Gu B, Hou B, Wen W. Perfect electromagnetic absorption at one-atom-thick scale. Applied Physics Letters, 2015, 107(18): 181112
CrossRef
Google scholar
|
[58] |
Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, 1(3): 438–483
CrossRef
Google scholar
|
[59] |
Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science, 2007, 317(5845): 1698–1702
CrossRef
Pubmed
Google scholar
|
[60] |
Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P. A metamaterial for directive emission. Physical Review Letters, 2002, 89(21): 213902
CrossRef
Pubmed
Google scholar
|
[61] |
Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J, Ebbesen T W. Beaming light from a subwavelength aperture. Science, 2002, 297(5582): 820–822
CrossRef
Pubmed
Google scholar
|
[62] |
Xu H, Zhao Z, Lv Y, Du C, Luo X. Metamaterial superstrate and electromagnetic band-gap substrate for high directive antenna. International Journal of Infrared and Millimeter Waves, 2008, 29(5): 493–498
CrossRef
Google scholar
|
[63] |
Lier E, Werner D H, Scarborough C P, Wu Q, Bossard J A. An octave-bandwidth negligible-loss radiofrequency metamaterial. Nature Materials, 2011, 10(3): 216–222
CrossRef
Pubmed
Google scholar
|
[64] |
Wang M, Huang C, Pu M, Luo X. Reducing side lobe level of antenna using frequency selective surface superstrate. Microwave and Optical Technology Letters, 2015, 57(8): 1971–1975
CrossRef
Google scholar
|
[65] |
Ma X, Pan W, Huang C, Pu M, Wang Y, Zhao B, Cui J, Wang C, Luo X. An active metamaterial for polarization manipulating. Advanced Optical Materials, 2014, 2(10): 945–949
CrossRef
Google scholar
|
[66] |
Ma X, Huang C, Pan W, Zhao B, Cui J, Luo X. A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial. IEEE Transactions on Antennas and Propagation, 2014, 62(4): 2307–2311
CrossRef
Google scholar
|
[67] |
Pan W, Huang C, Chen P, Ma X, Hu C, Luo X. A low-RCS and high-gain partially reflecting surface antenna. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 945–949
CrossRef
Google scholar
|
[68] |
Pan W, Huang C, Chen P, Pu M, Ma X, Luo X. A beam steering horn antenna using active frequency selective surface. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6218–6223
CrossRef
Google scholar
|
[69] |
Huang C, Pan W, Ma X, Zhao B, Cui J, Luo X. Using reconfigurable transmitarray to achieve beam-steering and polarization manipulation applications. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4801–4810
CrossRef
Google scholar
|
[70] |
Young L, Robinson L A, Hacking C. Meander-line polarizer. IEEE Transactions on Antennas and Propagation, 1973, 21(3): 376–378
CrossRef
Google scholar
|
[71] |
Flanders D C. Submicrometer periodicity gratings as artificial anisotropic dielectrics. Applied Physics Letters, 1983, 42(6): 492–494
CrossRef
Google scholar
|
[72] |
Ma X, Huang C, Pu M, Wang Y, Zhao Z, Wang C, Luo X. Dual-band asymmetry chiral metamaterial based on planar spiral structure. Applied Physics Letters, 2012, 101(16): 161901
CrossRef
Google scholar
|
[73] |
Huang C, Ma X, Pu M, Yi G, Wang Y, Luo X. Dual-band 90° polarization rotator using twisted split ring resonators array. Optics Communications, 2013, 291: 345–348
CrossRef
Google scholar
|
[74] |
Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Physical Review Letters, 2007, 99(6): 063908
CrossRef
Pubmed
Google scholar
|
[75] |
Pors A, Nielsen M G, Valle G D, Willatzen M, Albrektsen O, Bozhevolnyi S I. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Optics Letters, 2011, 36(9): 1626–1628
CrossRef
Pubmed
Google scholar
|
[76] |
Pu M, Chen P, Wang Y, Zhao Z, Huang C, Wang C, Ma X, Luo X. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Applied Physics Letters, 2013, 102(13): 131906
CrossRef
Google scholar
|
[77] |
Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340(6138): 1304–1307
CrossRef
Pubmed
Google scholar
|
[78] |
Guo Y, Wang Y, Pu M, Zhao Z, Wu X, Ma X, Wang C, Yan L, Luo X. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Scientific Reports, 2015, 5: 8434
CrossRef
Pubmed
Google scholar
|
[79] |
Cardano F, Marrucci L. Spin-orbit photonics. Nature Photonics, 2015, 9(12): 776–778
CrossRef
Google scholar
|
[80] |
Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C, Zhao Z, Luo X. A planar chiral meta-surface for optical vortex generation and focusing. Scientific Reports, 2015, 5: 10365
CrossRef
Pubmed
Google scholar
|
[81] |
Berry M V. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1984, 392(1802): 45–57
|
[82] |
Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Applied Physics Letters, 2003, 82(3): 328–330
CrossRef
Google scholar
|
[83] |
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
CrossRef
Pubmed
Google scholar
|
[84] |
Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335(6067): 427
CrossRef
Pubmed
Google scholar
|
[85] |
Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X. Catenary optics for achromatic generation of perfect optical angular momentum. Science Advances, 2015, 1(9): e1500396
CrossRef
Pubmed
Google scholar
|
[86] |
Wang Y, Pu M, Zhang Z, Li X, Ma X, Zhao Z, Luo X. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection. Scientific Reports, 2015, 5: 17733
CrossRef
Pubmed
Google scholar
|
[87] |
Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X. Catenary nanostructures as compact Bessel beam generators. Scientific Reports, 2016, 6: 20524
CrossRef
Pubmed
Google scholar
|
[88] |
Wang Y, Pu M, Hu C, Zhao Z, Wang C, Luo X. Dynamic manipulation of polarization states using anisotropic meta-surface. Optics Communications, 2014, 319(0): 14–16
CrossRef
Google scholar
|
[89] |
Shi J, Fang X, Rogers E T F, Plum E, MacDonald K F, Zheludev N I. Coherent control of Snell’s law at metasurfaces. Optics Express, 2014, 22(17): 21051–21060
CrossRef
Pubmed
Google scholar
|
[90] |
Li X, Pu M, Wang Y, Ma X, Li Y, Gao H, Zhao Z, Gao P, Wang C, Luo X. Dynamic control of the extraordinary optical scattering in semi-continuous two-dimensional metamaterials. Advanced Optical Materials, 2016, doi: 10.1002/adom.201500713
CrossRef
Google scholar
|
[91] |
Maier S A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007
|
[92] |
Luo X, Yan L. Surface plasmon polaritons and its applications. IEEE Photonics Journal, 2012, 4(2): 590–595
CrossRef
Google scholar
|
[93] |
Polo J A Jr, Lakhtakia A. Surface electromagnetic waves: a review. Laser & Photonics Reviews, 2011, 5(2): 234–246
CrossRef
Google scholar
|
[94] |
Zhao Z, Luo Y, Zhang W, Wang C, Gao P, Wang Y, Pu M, Yao N, Zhao C, Luo X. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination. Scientific Reports, 2015, 5: 15320
CrossRef
Pubmed
Google scholar
|
[95] |
Yao H, Yu G, Yan P, Chen X, Luo X. Patterining sub 100 nm isolated patterns with 436 nm lithography. In: Proceedings of 2003 International Microprocesses and Nanotechnology Conference. 2003, 7947638
|
[96] |
Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique. Applied Physics Letters, 2004, 84(23): 4780–4782
CrossRef
Google scholar
|
[97] |
Luo X, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance. Optics Express, 2004, 12(14): 3055–3065
CrossRef
Pubmed
Google scholar
|
[98] |
Wang C, Gao P, Zhao Z, Yao N, Wang Y, Liu L, Liu K, Luo X. Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Optics Express, 2013, 21(18): 20683–20691
CrossRef
Pubmed
Google scholar
|
[99] |
Luo J, Zeng B, Wang C, Gao P, Liu K, Pu M, Jin J, Zhao Z, Li X, Yu H, Luo X. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale, 2015, 7(44): 18805–18812
CrossRef
Pubmed
Google scholar
|
[100] |
Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Applied Physics Letters, 2015, 106(9): 093110
CrossRef
Google scholar
|
[101] |
Coles J A. Some reflective properties of the tapetum lucidum of the cat’s eye. The Journal of Physiology, 1971, 212(2): 393–409
CrossRef
Pubmed
Google scholar
|
[102] |
Li Y, Li X, Pu M, Zhao Z, Ma X, Wang Y, Luo X. Achromatic flat optical components via compensation between structure and material dispersions. Scientific Reports, 2016, 6: 19885
CrossRef
Pubmed
Google scholar
|
[103] |
Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser & Photonics Reviews, 2015, 9(6): 713–719
CrossRef
Google scholar
|
[104] |
Wang C, Tang D, Wang Y, Zhao Z, Wang J, Pu M, Zhang Y, Yan W, Gao P, Luo X. Super-resolution optical telescopes with local light diffraction shrinkage. Scientific Reports, 2015, 5: 18485
CrossRef
Pubmed
Google scholar
|
[105] |
Li Y, Liu F, Xiao L, Cui K, Feng X, Zhang W, Huang Y. Two-surface-plasmon-polariton-absorption based nanolithography. Applied Physics Letters, 2013, 102(6): 063113
CrossRef
Google scholar
|
[106] |
Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber. Applied Physics Letters, 2009, 95(4): 041106
CrossRef
Google scholar
|
[107] |
Sheng C, Liu H, Wang Y, Zhu S N, Genov D A. Trapping light by mimicking gravitational lensing. Nature Photonics, 2013, 7(11): 902–906
CrossRef
Google scholar
|
[108] |
Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media. Reviews of Modern Physics, 2005, 77(2): 633–673
CrossRef
Google scholar
|
[109] |
Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonances in nanoscale structures. Reviews of Modern Physics, 2010, 82(3): 2257–2298
CrossRef
Google scholar
|
[110] |
Fano U. Effects of configuration interaction on intensities and phase shifts. Physical Review, 1961, 124(6): 1866–1878
CrossRef
Google scholar
|
[111] |
Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 2010, 9(9): 707–715
CrossRef
Pubmed
Google scholar
|
[112] |
Pu M, Hu C, Huang C, Wang C, Zhao Z, Wang Y, Luo X. Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Optics Express, 2013, 21(1): 992–1001
CrossRef
Pubmed
Google scholar
|
[113] |
Pu M, Song M, Yu H, Hu C, Wang M, Wu X, Luo J, Zhang Z, Luo X. Fano resonance induced by mode coupling in all-dielectric nanorod array. Applied Physics Express, 2014, 7(3): 032002
CrossRef
Google scholar
|
[114] |
Chen S, Jin S, Gordon R. Subdiffraction focusing enabled by a fano resonance. Physical Review X, 2014, 4(3): 031021
CrossRef
Google scholar
|
[115] |
Song M, Wang C, Zhao Z, Pu M, Liu L, Zhang W, Yu H, Luo X. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale, 2016, 8(3): 1635–1641
CrossRef
Pubmed
Google scholar
|
[116] |
McPhedran R C, Parker A R. Biomimetics: lessons on optics from nature’s school. Physics Today, 2015, 68(6): 32–37
CrossRef
Google scholar
|
/
〈 | 〉 |