Subwavelength electromagnetics

Xiangang LUO

PDF(4905 KB)
PDF(4905 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (2) : 138-150. DOI: 10.1007/s12200-016-0632-1
REVIEW ARTICLE
REVIEW ARTICLE

Subwavelength electromagnetics

Author information +
History +

Abstract

Subwavelength electromagnetics is a discipline that deals with light-matter interaction at subwavelength scale and innovative technologies that control electromagnetic waves with subwavelength structures. Although the history can be dated back to almost one hundred years ago, the flourish of these researching areas have been no more than 30 years. In this paper, we gave a brief review of the history, current status and future trends of subwavelength electromagnetics. In particular, the milestones related with metamaterials, plasmonics, metasurfaces and photonic crystals are highlighted.

Keywords

electromagnetics / subwavelength scale / metamaterials / plasmonics / photonic crystals

Cite this article

Download citation ▾
Xiangang LUO. Subwavelength electromagnetics. Front. Optoelectron., 2016, 9(2): 138‒150 https://doi.org/10.1007/s12200-016-0632-1

References

[1]
Lorentz H A. Collected Papers. Hague, 1937
[2]
Jackson J D. Classical Electrodynamics.Hoboken: Wiley, 1999
[3]
Knott E F, Shaeffer J F, Tuley M T. Radar Cross Section.USA: SciTech Publishing, 2004
[4]
Zhou B, Kane T J, Dixon G J, Byer R L. Efficient, frequency-stable laser-diode-pumped Nd:YAG laser. Optics Letters, 1985, 10(2): 62–64
CrossRef Pubmed Google scholar
[5]
Gordon R G. Criteria for choosing transparent conductors. MRS Bulletin, 2000, 25(8): 52–57
CrossRef Google scholar
[6]
West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A. Searching for better plasmonic materials. Laser & Photonics Reviews, 2010, 4(6): 795–808
CrossRef Google scholar
[7]
De S, Coleman J N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano, 2010, 4(5): 2713–2720
CrossRef Pubmed Google scholar
[8]
Feynman R P. There’s plenty of room at the bottom. Engineering and Science, 1960, 23: 22–36
[9]
Brongersma M L. Introductory lecture: nanoplasmonics. Faraday Discussions, 2015, 178: 9–36
CrossRef Pubmed Google scholar
[10]
Veselago V G. The electrodynamics of substances with simultaneously negative values of e and m. Soviet Physics- Uspekhi, 1968, 10(4): 509–514
CrossRef Google scholar
[11]
Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776
CrossRef Pubmed Google scholar
[12]
Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
CrossRef Google scholar
[13]
Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187
CrossRef Pubmed Google scholar
[14]
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
CrossRef Pubmed Google scholar
[15]
Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
CrossRef Pubmed Google scholar
[16]
Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782
CrossRef Pubmed Google scholar
[17]
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
CrossRef Pubmed Google scholar
[18]
Emerson D T. The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(12): 2267–2273
CrossRef Google scholar
[19]
Ritchie R H. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106(5): 874–881
CrossRef Google scholar
[20]
Luo X. Principles of electromagnetic waves in metasurfaces. Science China-Physics, Mechanics & Astronomy, 2015, 58(9): 594201
CrossRef Google scholar
[21]
Luo X, Pu M, Ma X, Li X. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. International Journal of Antennas and Propagation, 2015, 16: 204127
[22]
Leonhardt U. Optical conformal mapping. Science, 2006, 312(5781): 1777–1780
CrossRef Pubmed Google scholar
[23]
Valentine J, Li J, Zentgraf T, Bartal G, Zhang X. An optical cloak made of dielectrics. Nature Materials, 2009, 8(7): 568–571
CrossRef Pubmed Google scholar
[24]
Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R. Broadband ground-plane cloak. Science, 2009, 323(5912): 366–369
CrossRef Pubmed Google scholar
[25]
Gabrielli L H, Cardenas J, Poitras C B, Lipson M. Silicon nanostructure cloak operating at optical frequencies. Nature Photonics, 2009, 3(8): 461–463
CrossRef Google scholar
[26]
Hashemi H, Zhang B, Joannopoulos J D, Johnson S G. Delay-bandwidth and delay-loss limitations for cloaking of large objects. Physical Review Letters, 2010, 104(25): 253903
CrossRef Pubmed Google scholar
[27]
Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking. Physical Review Letters, 2008, 101(20): 203901
CrossRef Pubmed Google scholar
[28]
Zigoneanu L, Popa B I, Cummer S A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nature Materials, 2014, 13(4): 352–355
CrossRef Pubmed Google scholar
[29]
Han T, Bai X, Gao D, Thong J T L, Li B, Qiu C W. Experimental demonstration of a bilayer thermal cloak. Physical Review Letters, 2014, 112(5): 054302
CrossRef Pubmed Google scholar
[30]
Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science, 2015, 349(6254): 1310–1314
CrossRef Pubmed Google scholar
[31]
Pu M, Zhao Z, Wang Y, Li X, Ma X, Hu C, Wang C, Huang C, Luo X. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Scientific Reports, 2015, 5: 9822
CrossRef Pubmed Google scholar
[32]
Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X. Multispectral optical metasurfaces enabled by achromatic phase transition. Scientific Reports, 2015, 5: 15781
CrossRef Pubmed Google scholar
[33]
Aieta F, Kats M A, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347(6228): 1342–1345
CrossRef Pubmed Google scholar
[34]
Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686
CrossRef Pubmed Google scholar
[35]
Jacob Z, Alekseyev L V, Narimanov E. Optical Hyperlens: far-field imaging beyond the diffraction limit. Optics Express, 2006, 14(18): 8247–8256
CrossRef Pubmed Google scholar
[36]
Kildishev A V, Narimanov E E. Impedance-matched hyperlens. Optics Letters, 2007, 32(23): 3432–3434
CrossRef Pubmed Google scholar
[37]
Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nature Photonics, 2013, 7(12): 948–957
CrossRef Google scholar
[38]
Liang G, Wang C, Zhao Z, Wang Y, Yao N, Gao P, Luo Y, Gao G, Zhao Q, Luo X. Squeezing bulk plasmon polaritons through hyperbolic metamaterial for large area deep subwavelength interference lithography. Advanced Optical Materials, 2015, 3(9): 1248–1256
CrossRef Google scholar
[39]
Engheta N. Thin absorbing screens using metamaterial surfaces. IEEE Antennas and Propagation Society International Symposium, 2002, 2: 392–395
[40]
Sievenpiper D F, Schaffner J H, Song H J, Loo R Y, Tangonan G. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2713–2722
CrossRef Google scholar
[41]
Munk B A. Frequency Selective Surfaces.New York: Wiley, 2000
[42]
Senior T. Approximate boundary conditions. IEEE Transactions on Antennas and Propagation, 1981, 29(5): 826–829
CrossRef Google scholar
[43]
Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces. Nature Photonics, 2014, 8(12): 889–898
CrossRef Google scholar
[44]
Salisbury W W. Absorbent body for electromagnetic waves. United States Patent, 1952, 2599944
[45]
Sievenpiper D F. High-impedance electromagnetic surfaces. Dissertation for the Doctoral Degree. Los Angeles: University of California, 1999
[46]
Pu M, Feng Q, Hu C, Luo X. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics, 2012, 7(4): 733–738
CrossRef Google scholar
[47]
Sievenpiper D, Zhang L, Broas R, Alexopolous N, Yablonovitch E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2059–2074
CrossRef Google scholar
[48]
Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
CrossRef Pubmed Google scholar
[49]
Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X. Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Optics Express, 2011, 19(18): 17413–17420
CrossRef Pubmed Google scholar
[50]
Vora A, Gwamuri J, Pala N, Kulkarni A, Pearce J M, Güney D Ö. Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Scientific Reports, 2014, 4: 4901
CrossRef Pubmed Google scholar
[51]
Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104
CrossRef Google scholar
[52]
Feng Q, Pu M, Hu C, Luo X. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Optics Letters, 2012, 37(11): 2133–2135
CrossRef Pubmed Google scholar
[53]
Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230–1234
CrossRef Google scholar
[54]
Brewitt-Taylor C R. Limitation on the bandwidth of artificial perfect magnetic conductor surfaces. IET Microwaves, Antennas & Propagation, 2007, 1(1): 255–260
[55]
Pu M, Feng Q, Wang M, Hu C, Huang C, Ma X, Zhao Z, Wang C, Luo X. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Optics Express, 2012, 20(3): 2246–2254
CrossRef Pubmed Google scholar
[56]
Li S, Luo J, Anwar S, Li S, Lu W, Hang Z H, Lai Y, Hou B, Shen M, Wang C. Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(22): 220301
CrossRef Google scholar
[57]
Li S, Duan Q, Li S, Yin Q, Lu W, Li L, Gu B, Hou B, Wen W. Perfect electromagnetic absorption at one-atom-thick scale. Applied Physics Letters, 2015, 107(18): 181112
CrossRef Google scholar
[58]
Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, 1(3): 438–483
CrossRef Google scholar
[59]
Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science, 2007, 317(5845): 1698–1702
CrossRef Pubmed Google scholar
[60]
Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P. A metamaterial for directive emission. Physical Review Letters, 2002, 89(21): 213902
CrossRef Pubmed Google scholar
[61]
Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J, Ebbesen T W. Beaming light from a subwavelength aperture. Science, 2002, 297(5582): 820–822
CrossRef Pubmed Google scholar
[62]
Xu H, Zhao Z, Lv Y, Du C, Luo X. Metamaterial superstrate and electromagnetic band-gap substrate for high directive antenna. International Journal of Infrared and Millimeter Waves, 2008, 29(5): 493–498
CrossRef Google scholar
[63]
Lier E, Werner D H, Scarborough C P, Wu Q, Bossard J A. An octave-bandwidth negligible-loss radiofrequency metamaterial. Nature Materials, 2011, 10(3): 216–222
CrossRef Pubmed Google scholar
[64]
Wang M, Huang C, Pu M, Luo X. Reducing side lobe level of antenna using frequency selective surface superstrate. Microwave and Optical Technology Letters, 2015, 57(8): 1971–1975
CrossRef Google scholar
[65]
Ma X, Pan W, Huang C, Pu M, Wang Y, Zhao B, Cui J, Wang C, Luo X. An active metamaterial for polarization manipulating. Advanced Optical Materials, 2014, 2(10): 945–949
CrossRef Google scholar
[66]
Ma X, Huang C, Pan W, Zhao B, Cui J, Luo X. A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial. IEEE Transactions on Antennas and Propagation, 2014, 62(4): 2307–2311
CrossRef Google scholar
[67]
Pan W, Huang C, Chen P, Ma X, Hu C, Luo X. A low-RCS and high-gain partially reflecting surface antenna. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 945–949
CrossRef Google scholar
[68]
Pan W, Huang C, Chen P, Pu M, Ma X, Luo X. A beam steering horn antenna using active frequency selective surface. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6218–6223
CrossRef Google scholar
[69]
Huang C, Pan W, Ma X, Zhao B, Cui J, Luo X. Using reconfigurable transmitarray to achieve beam-steering and polarization manipulation applications. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4801–4810
CrossRef Google scholar
[70]
Young L, Robinson L A, Hacking C. Meander-line polarizer. IEEE Transactions on Antennas and Propagation, 1973, 21(3): 376–378
CrossRef Google scholar
[71]
Flanders D C. Submicrometer periodicity gratings as artificial anisotropic dielectrics. Applied Physics Letters, 1983, 42(6): 492–494
CrossRef Google scholar
[72]
Ma X, Huang C, Pu M, Wang Y, Zhao Z, Wang C, Luo X. Dual-band asymmetry chiral metamaterial based on planar spiral structure. Applied Physics Letters, 2012, 101(16): 161901
CrossRef Google scholar
[73]
Huang C, Ma X, Pu M, Yi G, Wang Y, Luo X. Dual-band 90° polarization rotator using twisted split ring resonators array. Optics Communications, 2013, 291: 345–348
CrossRef Google scholar
[74]
Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Physical Review Letters, 2007, 99(6): 063908
CrossRef Pubmed Google scholar
[75]
Pors A, Nielsen M G, Valle G D, Willatzen M, Albrektsen O, Bozhevolnyi S I. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Optics Letters, 2011, 36(9): 1626–1628
CrossRef Pubmed Google scholar
[76]
Pu M, Chen P, Wang Y, Zhao Z, Huang C, Wang C, Ma X, Luo X. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Applied Physics Letters, 2013, 102(13): 131906
CrossRef Google scholar
[77]
Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340(6138): 1304–1307
CrossRef Pubmed Google scholar
[78]
Guo Y, Wang Y, Pu M, Zhao Z, Wu X, Ma X, Wang C, Yan L, Luo X. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Scientific Reports, 2015, 5: 8434
CrossRef Pubmed Google scholar
[79]
Cardano F, Marrucci L. Spin-orbit photonics. Nature Photonics, 2015, 9(12): 776–778
CrossRef Google scholar
[80]
Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C, Zhao Z, Luo X. A planar chiral meta-surface for optical vortex generation and focusing. Scientific Reports, 2015, 5: 10365
CrossRef Pubmed Google scholar
[81]
Berry M V. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1984, 392(1802): 45–57
[82]
Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Applied Physics Letters, 2003, 82(3): 328–330
CrossRef Google scholar
[83]
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
CrossRef Pubmed Google scholar
[84]
Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335(6067): 427
CrossRef Pubmed Google scholar
[85]
Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X. Catenary optics for achromatic generation of perfect optical angular momentum. Science Advances, 2015, 1(9): e1500396
CrossRef Pubmed Google scholar
[86]
Wang Y, Pu M, Zhang Z, Li X, Ma X, Zhao Z, Luo X. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection. Scientific Reports, 2015, 5: 17733
CrossRef Pubmed Google scholar
[87]
Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X. Catenary nanostructures as compact Bessel beam generators. Scientific Reports, 2016, 6: 20524
CrossRef Pubmed Google scholar
[88]
Wang Y, Pu M, Hu C, Zhao Z, Wang C, Luo X. Dynamic manipulation of polarization states using anisotropic meta-surface. Optics Communications, 2014, 319(0): 14–16
CrossRef Google scholar
[89]
Shi J, Fang X, Rogers E T F, Plum E, MacDonald K F, Zheludev N I. Coherent control of Snell’s law at metasurfaces. Optics Express, 2014, 22(17): 21051–21060
CrossRef Pubmed Google scholar
[90]
Li X, Pu M, Wang Y, Ma X, Li Y, Gao H, Zhao Z, Gao P, Wang C, Luo X. Dynamic control of the extraordinary optical scattering in semi-continuous two-dimensional metamaterials. Advanced Optical Materials, 2016, doi: 10.1002/adom.201500713
CrossRef Google scholar
[91]
Maier S A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007
[92]
Luo X, Yan L. Surface plasmon polaritons and its applications. IEEE Photonics Journal, 2012, 4(2): 590–595
CrossRef Google scholar
[93]
Polo J A Jr, Lakhtakia A. Surface electromagnetic waves: a review. Laser & Photonics Reviews, 2011, 5(2): 234–246
CrossRef Google scholar
[94]
Zhao Z, Luo Y, Zhang W, Wang C, Gao P, Wang Y, Pu M, Yao N, Zhao C, Luo X. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination. Scientific Reports, 2015, 5: 15320
CrossRef Pubmed Google scholar
[95]
Yao H, Yu G, Yan P, Chen X, Luo X. Patterining sub 100 nm isolated patterns with 436 nm lithography. In: Proceedings of 2003 International Microprocesses and Nanotechnology Conference. 2003, 7947638
[96]
Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique. Applied Physics Letters, 2004, 84(23): 4780–4782
CrossRef Google scholar
[97]
Luo X, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance. Optics Express, 2004, 12(14): 3055–3065
CrossRef Pubmed Google scholar
[98]
Wang C, Gao P, Zhao Z, Yao N, Wang Y, Liu L, Liu K, Luo X. Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Optics Express, 2013, 21(18): 20683–20691
CrossRef Pubmed Google scholar
[99]
Luo J, Zeng B, Wang C, Gao P, Liu K, Pu M, Jin J, Zhao Z, Li X, Yu H, Luo X. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale, 2015, 7(44): 18805–18812
CrossRef Pubmed Google scholar
[100]
Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Applied Physics Letters, 2015, 106(9): 093110
CrossRef Google scholar
[101]
Coles J A. Some reflective properties of the tapetum lucidum of the cat’s eye. The Journal of Physiology, 1971, 212(2): 393–409
CrossRef Pubmed Google scholar
[102]
Li Y, Li X, Pu M, Zhao Z, Ma X, Wang Y, Luo X. Achromatic flat optical components via compensation between structure and material dispersions. Scientific Reports, 2016, 6: 19885
CrossRef Pubmed Google scholar
[103]
Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser & Photonics Reviews, 2015, 9(6): 713–719
CrossRef Google scholar
[104]
Wang C, Tang D, Wang Y, Zhao Z, Wang J, Pu M, Zhang Y, Yan W, Gao P, Luo X. Super-resolution optical telescopes with local light diffraction shrinkage. Scientific Reports, 2015, 5: 18485
CrossRef Pubmed Google scholar
[105]
Li Y, Liu F, Xiao L, Cui K, Feng X, Zhang W, Huang Y. Two-surface-plasmon-polariton-absorption based nanolithography. Applied Physics Letters, 2013, 102(6): 063113
CrossRef Google scholar
[106]
Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber. Applied Physics Letters, 2009, 95(4): 041106
CrossRef Google scholar
[107]
Sheng C, Liu H, Wang Y, Zhu S N, Genov D A. Trapping light by mimicking gravitational lensing. Nature Photonics, 2013, 7(11): 902–906
CrossRef Google scholar
[108]
Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media. Reviews of Modern Physics, 2005, 77(2): 633–673
CrossRef Google scholar
[109]
Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonances in nanoscale structures. Reviews of Modern Physics, 2010, 82(3): 2257–2298
CrossRef Google scholar
[110]
Fano U. Effects of configuration interaction on intensities and phase shifts. Physical Review, 1961, 124(6): 1866–1878
CrossRef Google scholar
[111]
Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 2010, 9(9): 707–715
CrossRef Pubmed Google scholar
[112]
Pu M, Hu C, Huang C, Wang C, Zhao Z, Wang Y, Luo X. Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Optics Express, 2013, 21(1): 992–1001
CrossRef Pubmed Google scholar
[113]
Pu M, Song M, Yu H, Hu C, Wang M, Wu X, Luo J, Zhang Z, Luo X. Fano resonance induced by mode coupling in all-dielectric nanorod array. Applied Physics Express, 2014, 7(3): 032002
CrossRef Google scholar
[114]
Chen S, Jin S, Gordon R. Subdiffraction focusing enabled by a fano resonance. Physical Review X, 2014, 4(3): 031021
CrossRef Google scholar
[115]
Song M, Wang C, Zhao Z, Pu M, Liu L, Zhang W, Yu H, Luo X. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale, 2016, 8(3): 1635–1641
CrossRef Pubmed Google scholar
[116]
McPhedran R C, Parker A R. Biomimetics: lessons on optics from nature’s school. Physics Today, 2015, 68(6): 32–37
CrossRef Google scholar

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (No. 2013CBA01700) and the National Natural Science Foundation of China (Grant No. 61138002).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(4905 KB)

Accesses

Citations

Detail

Sections
Recommended

/