Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications

Swapnajit CHAKRAVARTY, Xiangning CHEN, Naimei TANG, Wei-Cheng LAI, Yi ZOU, Hai YAN, Ray T. CHEN

PDF(2940 KB)
PDF(2940 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (2) : 206-224. DOI: 10.1007/s12200-016-0631-2
REVIEW ARTICLE

Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications

Author information +
History +

Abstract

In this paper, we reviewed the design principles of two-dimensional (2D) silicon photonic crystal microcavity (PCM) biosensors coupled to photonic crystal waveguides (PCWs). Microcavity radiation loss is controlled by engineered the cavity mode volume. Coupling loss into the waveguide is controlled by adjusting the position of the microcavity from the waveguide. We also investigated the dependence of analyte overlap integral (also called fill fraction) of the resonant mode as well as the effect of group index of the coupling waveguide at the resonant wavelength of the microcavity. In addition to the cavity properties, absorbance of the sensing medium or analyte together with the affinity constant of the probe and target biomarkers involved in the biochemical reaction also limits the minimum detection limits. We summarized our results in applications in cancer biomarker detection, heavy metal sensing and therapeutic drug monitoring.

Keywords

photonic crystal (PC) sensor / biosensor / slow light / photonic crystal microcavity (PCM) / photonic crystal waveguide (PCW) / high sensitivity / high specificity / photonic integrated circuits (PICs) / nanophotonics

Cite this article

Download citation ▾
Swapnajit CHAKRAVARTY, Xiangning CHEN, Naimei TANG, Wei-Cheng LAI, Yi ZOU, Hai YAN, Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications. Front. Optoelectron., 2016, 9(2): 206‒224 https://doi.org/10.1007/s12200-016-0631-2

References

[1]
Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry, 1971, 8(9): 871–874
CrossRef Pubmed Google scholar
[2]
Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(9): 4350–4354
CrossRef Pubmed Google scholar
[3]
Kevil C G, Walsh L, Laroux F S, Kalogeris T, Grisham M B, Alexander J S. An Improved, Rapid Northern Protocol. Biochemical & Biophysical Research Communications, 1977, 238(2): 277–279
[4]
Ren H C, Vollmer F, Arnold S, Libchaber A. High-Q microsphere biosensor-analysis for adsorption of rodlike bacteria. Optics Express, 2007, 15(25): 17410–17423
CrossRef Pubmed Google scholar
[5]
Šípová H, Zhang S, Dudley A M, Galas D, Wang K, Homola J. Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Analytical Chemistry, 2010, 82(24): 10110–10115
CrossRef Pubmed Google scholar
[6]
Densmore A, Vachon M, Xu D X, Janz S, Ma R, Li Y H, Lopinski G, Delâge A, Lapointe J, Luebbert C C, Liu Q Y, Cheben P, Schmid J H. Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. Optics Letters, 2009, 34(23): 3598–3600
CrossRef Pubmed Google scholar
[7]
Luff B J, Wilkinson J S, Piehler J, Hollenbach U, Ingenhoff J, Fabricius N. Integrated optical Mach-Zehnder biosensor. Journal of Lightwave Technology, 1998, 16(4): 583–592
CrossRef Google scholar
[8]
Fang Y, Ferrie A M, Fontaine N H, Mauro J, Balakrishnan J. Resonant waveguide grating biosensor for living cell sensing. Biophysical Journal, 2006, 91(5): 1925–1940
CrossRef Pubmed Google scholar
[9]
Iqbal M, Gleeson M A, Spaugh B, Tybor F, Gunn W G, Hochberg M, Baehr-Jones T, Bailey R C, Gunn L C. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(3): 654–661
CrossRef Google scholar
[10]
Kang C, Phare C T, Vlasov Y A, Assefa S, Weiss S M. Photonic crystal slab sensor with enhanced surface area. Optics Express, 2010, 18(26): 27930–27937
CrossRef Pubmed Google scholar
[11]
Block I D, Chan L L, Cunningham B T. Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sensors and Actuators. B, Chemical, 2006, 120(1): 187–193
CrossRef Google scholar
[12]
Skivesen N, Têtu A, Kristensen M, Kjems J, Frandsen L H, Borel P I. Photonic-crystal waveguide biosensor. Optics Express, 2007, 15(6): 3169–3176
CrossRef Pubmed Google scholar
[13]
Vashist S K, Luppa P B, Yeo L Y, Ozcan A, Luong J H T. Emerging technologies for next-generation point-of-care testing. Trends in Biotechnology, 2015, 33(11): 692–705
CrossRef Pubmed Google scholar
[14]
Liang P S, Park T S, Yoon J Y. Rapid and reagentless detection of microbial contamination within meat utilizing a smartphone-based biosensor. Scientific Reports, 2014, 4(5953): 5953
CrossRef Pubmed Google scholar
[15]
Chakravarty S, Topol’ancik J, Bhattacharya P, Chakrabarti S, Kang Y, Meyerhoff M E. Ion detection with photonic crystal microcavities. Optics Letters, 2005, 30(19): 2578–2580
CrossRef Pubmed Google scholar
[16]
Lee M R, Fauchet P M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Optics Express, 2007, 15(8): 4530–4535
CrossRef Pubmed Google scholar
[17]
Song B S, Noda S, Asano T, Akahane Y. Ultra-high-Q photonic double heterostructure nanocavity. Nature Materials, 2005, 4(3): 207–210
CrossRef Google scholar
[18]
Tan C P, Cipriany B R, Lin D M, Craighead H G. Nanoscale resolution, multicomponent biomolecular arrays generated by aligned printing with parylene peel-off. Nano Letters, 2010, 10(2): 719–725
CrossRef Pubmed Google scholar
[19]
Akahane Y, Asano T, Song B S, Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 2003, 425(6961): 944–947
CrossRef Pubmed Google scholar
[20]
Lin C Y, Wang X, Chakravarty S, Lee B S, Lai W C, Chen R T. Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide. Applied Physics Letters, 2010, 97(18): 183302
CrossRef Google scholar
[21]
Lai W C, Chakravarty S, Zou Y, Chen R T. Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing. Optics Letters, 2012, 37(7): 1208–1210
CrossRef Pubmed Google scholar
[22]
Chakravarty S, Zou Y, Lai W C, Chen R T. Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon. Biosensors & Bioelectronics, 2012, 38(1): 170–176
CrossRef Pubmed Google scholar
[23]
Zou Y, Chakravarty S, Kwong D N, Lai W C, Xu X, Lin X, Hosseini A, Chen R T. Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 6900710
[24]
Lai W C, Chakravarty S, Zou Y, Guo Y, Chen R T. Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors. Applied Physics Letters, 2013, 102(4): 041111
CrossRef Pubmed Google scholar
[25]
Mortensen N A, Xiao S, Pedersen J. Liquid-infiltrated photonic crystals-enhanced light-matter interactions for lab-on-achip applications. Microfluidics & Nanofluidics, 2008, 4: 117
[52]
Chakravarty S, Hosseini A, Xu X, Zhu L, Zou Y, Chen R T. Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors Applied Physics Letters, 2014, 104(19): 191109
CrossRef Google scholar
[26]
Mehta K K, Orcutt J S, Ram R J. Fano line shapes in transmission spectra of silicon photonic crystal resonators. Applied Physics Letters, 2013, 102(8): 081109
CrossRef Google scholar
[27]
White I M, Fan X. On the performance quantification of resonant refractive index sensors. Optics Express, 2008, 16(2): 1020–1028
CrossRef Pubmed Google scholar
[28]
Lai W C, Chakravarty S, Wang X, Lin C Y, Chen R T. Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water. Applied Physics Letters, 2011, 98(2): 023304
CrossRef Google scholar
[29]
McMahon R J, Avidin-Biotin Interactions: Methods and Applications. Berlin: Humana Press, 2008, 90
[30]
Rahimi S, Hosseini A, Xu X, Subbaraman H, Chen R T. Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor. Optics Express, 2011, 19(22): 21832–21841
CrossRef Pubmed Google scholar
[31]
Nagahara K, Morifuji M, Kondow M. Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal. Photonics and Nanostructures- Fundamentals and Applications, 2011, 9(9): 261–268
[32]
Subramanian A, Kennel S J, Oden P I, Jacobson K B, Woodward J, Doktycz M J. Comparisons of techniques for enzyme immobilization on silicon supports. Enzyme and Microbial Technology, 1999, 24(1-2): 26–34
CrossRef Google scholar
[33]
Nelson D L, Cox M M. Lehninger Principles of Biochemistry. 5th ed. New York: W. H. Freeman Macmillan, 2008
[34]
de Feijter J A, Benjamins J, Veer F A. Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface. Biopolymers, 1978, 17(7): 1759–1772
CrossRef Google scholar
[53]
Kuo S C, Lauffenburger D A. Relationship between receptor/ligand binding affinity and adhesion strength. Biophysical Journal, 1993, 65(5): 2191–2200
CrossRef Google scholar
[54]
de Groote D, Marchant A, Fauchet F, Jadoul M, Dehart I, Gérard C, Gevaert Y, Lopez M, Gathy R, Franssen J D, Radoux D, Franchimont P J. Characterisation of monoclonal antibodies against human interleukin-10 and their use in an ELISA for the measurement of this cytokine. Journal of Immunological Methods, 1994, 177(1-2): 225–234
CrossRef Google scholar
[41]
Scullion M G, Di Falco A, Krauss T F. Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosensors and Bioelectronics, 2011, 27(1): 101–105
[35]
Li H, Fan X. Characterization of sensing capability of optofluidic ring resonator biosensors. Applied Physics Letters, 2010, 97(1): 011105
CrossRef Google scholar
[36]
Barrios C A. Optical slot-waveguide based biochemical sensors. Sensors (Basel, Switzerland), 2009, 9(6): 4751–4765
CrossRef Pubmed Google scholar
[37]
de Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Optics Express, 2007, 15(12): 7610–7615
CrossRef Pubmed Google scholar
[38]
Carlborg C F, Gylfason K B, Kaźmierczak A, Dortu F, Bañuls Polo M J, Maquieira Catala A, Kresbach G M, Sohlström H, Moh T, Vivien L, Popplewell J, Ronan G, Barrios C A, Stemme G, van der Wijngaart W. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab on a Chip, 2010, 10(3): 281–290
CrossRef Pubmed Google scholar
[39]
Dorfner D, Zabel T, Hurlimann T, Hauke N, Frandsen L, Rant U, Abstreiter G, Finley J. Photonic crystal nanostructures for optical biosensing applications. Biosensors and Bioelectronics, 2009, 24(12): 3688–3692
[40]
Mandal S, Erickson D. Nanoscale optofluidic sensor arrays. Optics Express, 2008, 16(3): 1623–1631
CrossRef Pubmed Google scholar
[42]
Zlatanovic S, Mirkarimi L W, Sigalas M M, Bynum M A, Chow E, Robotti K M, Burr G W, Esener S, Grot A. Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration. Sensors and Actuators. B, Chemical, 2009, 141(1): 13–19
CrossRef Google scholar
[43]
Zou Y, Chakravarty S, Lai W C, Lin C Y, Chen R T. Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform. Lab on a Chip, 2012, 12(13): 2309–2312
CrossRef Pubmed Google scholar
[44]
Guillermain E, Fauchet P M. Resonant microcavities coupled to a photonic crystal waveguide for multichannel biodetection. Materials Research Society Symposium Proceedings, 2009, 1191
CrossRef Google scholar
[45]
Pottier P, Gnan M, De La Rue R M. Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers. Optics Express, 2007, 15(11): 6569–6575
CrossRef Pubmed Google scholar
[46]
Zou Y, Chakravarty S, Zhu L, Chen R T. The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays. Applied Physics Letters, 2014, 104(14): 141103
CrossRef Google scholar
[48]
Chakravarty S, Lai W C, Zou Y, Drabkin H A, Gemmill R M, Simon G R, Chin S H, Chen R T. Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors. Biosensors & Bioelectronics, 2013, 43: 50–55
CrossRef Pubmed Google scholar
[49]
Yang C J, Tang N, Yan H, Chakravarty S, Li D, Chen R T. 193 nm lithography fabricated high sensitivity photonic crystal microcavity biosensors for plasma protein detection in patients with pancreatic cancer. In: Proceedings of CLEO (Optical Society of America), San Jose, CA. 2015, STu4K.5
[50]
Yan H, Yang C J, Zou Y, Tang N, Chakravarty S, Chen R T. Wide dynamic range specific detection of therapeutic drugs by photonic crystal microcavity arrays. In: Proceedings of CLEO (Optical Society of America), San Jose, CA. 2015, STu4K.2
[51]
Yan H, Tang N, Chakravarty S, Blake DA, Chen RT. High-sensitivity high-throughput chip based biosensor array for multiplexed detection of heavy metals. 2016, submitted

Acknowledgements

The review of our research presented here has been sponsored by various contracts and grants, namely National Cancer Institute SBIR Contracts # HHSN261201000085C, #HHSN261201200043C, US Army SBIR Contract #W911SR-12-C-0046, NSF Grant # # IIP-1127251 and DOE SBIR Grant #DE-SC0013177.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2940 KB)

Accesses

Citations

Detail

Sections
Recommended

/