Parameters that control and influence the organo-metal halide perovskite crystallization and morphology

Bat-El COHEN, Lioz ETGAR

PDF(1996 KB)
PDF(1996 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (1) : 44-52. DOI: 10.1007/s12200-016-0630-3
REVIEW ARTICLE
REVIEW ARTICLE

Parameters that control and influence the organo-metal halide perovskite crystallization and morphology

Author information +
History +

Abstract

This review discusses various parameters that influence and control the organo-metal halide perovskite crystallization process. The effect of the perovskite morphology on the photovoltaic performance is a critical factor. Moreover, it has a dramatic effect on the stability of the perovskite, which has significant importance for later use of the organo-metal perovskite in assorted applications. In this review, we brought together several research investigations that describe the main parameters that significantly influence perovskite crystallization, for example, the annealing process, the precursor solvent, anti-solvent treatment, and additives to the iteite solutions.

Keywords

hybrid perovskite / morphology / crystallization / perovskite surface

Cite this article

Download citation ▾
Bat-El COHEN, Lioz ETGAR. Parameters that control and influence the organo-metal halide perovskite crystallization and morphology. Front. Optoelectron., 2016, 9(1): 44‒52 https://doi.org/10.1007/s12200-016-0630-3

References

[1]
Aharon S, Dymshits A, Rotem A, Etgar L. Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9171–9178
CrossRef Google scholar
[2]
Huang L, Hu Z, Yue G, Liu J, Cui X, Zhang J, Zhu Y. CH3NH3PbI3-xClx films with coverage approaching 100% and with highly oriented crystal domains for reproducible and efficient planar heterojunction perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17(34): 22015–22022
CrossRef Pubmed Google scholar
[3]
Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Advanced Functional Materials, 2014, 24(21): 3250–3258
CrossRef Google scholar
[4]
Cohen B E, Gamliel S, Etgar L. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells. APL Materials, 2014, 2(8): 081502
CrossRef Google scholar
[5]
Chiang C, Tseng Z L, Wu C G. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a(2/1)-step spin-coating process. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(38): 15897–15903
CrossRef Google scholar
[6]
Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Efficient, high yield perovskite photovoltaic devices grown by inter diffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014, 7(8): 2619
CrossRef Google scholar
[7]
Xiao J, Yang Y, Xu X, Shi J, Zhu L, Lv S, Wu H, Luo Y, Li D, Meng Q. Pressure-assisted CH3NH3PbI3 morphology reconstruction to improve the high performance of perovskite solar cells. Journal of Materials Chemistry A, 2015, 3(10): 5289–5293
CrossRef Google scholar
[8]
Huang L, Hu Z, Xu J, Zhang K, Zhang J, Zhu Y. Multi-step slow annealing perovskite films for high performance planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2015, 141: 377–382
CrossRef Google scholar
[9]
Jeon Y J, Lee S, Kang R, Kim J E, Yeo J S, Lee S H, Kim S S, Yun J M, Kim D Y. Planar heterojunction perovskite solar cells with superior reproducibility. Scientific Reports, 2014, 4: 6953
CrossRef Pubmed Google scholar
[10]
Bao X, Wang Y, Zhu Q, Wang N, Zhu D, Wang J, Yang A, Yang R. Efficient planar perovskite solar cells with large fill factor and excellent stability. Journal of Power Sources, 2015, 297: 53e58
[11]
Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014, 7(8): 2619
CrossRef Google scholar
[12]
Tao C, Neutzner S, Colella L, Marras S, Kandada A R S, Gandini M, De Bastiani M, Pace G, Manna L, Caironi M, Bertarelli C, Petrozza A. 17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells. Energy & Environmental Science, 2015, 8(8): 2365–2370
CrossRef Google scholar
[13]
Bass K K, McAnally R E, Zhou S, Djurovich P I, Thompson M E, Melot B C. Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. Chemical Communications (Cambridge), 2014, 50(99): 15819–15822
CrossRef Pubmed Google scholar
[14]
You J, Yang Y, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G, Yang Y. Moisture assisted perovskite film growth for high performance solar cells. Applied Physics Letters, 2014, 105(18): 183902
CrossRef Google scholar
[15]
Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale, 2014, 6(12): 6679–6683
CrossRef Pubmed Google scholar
[16]
Nam J J, Jun H N, Young C K, Woon SY, Ryu S, Seok S. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897–903
[17]
Lian J, Wang Q, Yuan Y, Shao Y, Huang J. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3: 9146
[18]
Cai B, Zhang W H, Qiu J. Solvent engineering of spin-coating solutions for planar-structured high-efficiency perovskite solar cells. Chinese Journal of Catalysis, 2015, 36(8): 1183–1190
CrossRef Google scholar
[19]
Li W, Fan J, Li J, Mai Y, Wang L. Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. Journal of the American Chemical Society, 2015, 137(32): 10399–10405
CrossRef Pubmed Google scholar
[20]
Hao F, Stoumpos C C, Guo P, Zhou N, Marks T J, Chang R P H, Kanatzidis M G. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society, 2015, 137(35): 11445–11452
CrossRef Pubmed Google scholar
[21]
Lv M, Dong X, Fang X, Lin B, Zhang S, Ding J, Yuan N. A promising alternative solvent of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices. RSC Advances, 2015, 5(26): 20521–20529
CrossRef Google scholar
[22]
Wu Y, Chen W, Yue Y, Liu J, Bi E, Yang X, Islam A, Han L. Consecutive morphology controlling operations for highly reproducible mesostructured perovskite solar cells. ACS Applied Materials & Interfaces, 2015, 7(37): 20707–20713
CrossRef Pubmed Google scholar
[23]
Rong Y, Tang Z, Zhao Y, Zhong X, Venkatesan S, Graham H, Patton M, Jing Y, Guloy A M, Yao Y. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale, 2015, 7(24): 10595–10599
CrossRef Pubmed Google scholar
[24]
Lin K F, Chang S H, Wang K H, Cheng H M, Chiu K Y, Lee K M, Chen S H, Wu C G. Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment. Solar Energy Materials and Solar Cells, 2015, 141: 309–314
CrossRef Google scholar
[25]
Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angewandte Chemie, 2014, 53(37): 9898–9903
CrossRef Pubmed Google scholar
[26]
Zheng X, Chen B, Wu C, Priya S. Room temperature fabrication of CH3NH3PbBr3 by anti-solvent assisted crystallization approach for perovskite solar cells with fast response and small J-V hysteresis. Nano Energy, 2015, 17: 269–278
CrossRef Google scholar
[27]
Cohen B E, Aharon S, Dymshits A, Etgar L. Impact of anti-solvent treatment on carrier density in efficient hole conductor free perovskite based solar cells. Journal of Physical Chemistry, 2016, 120(1): 142–147
CrossRef Google scholar
[28]
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298
CrossRef Pubmed Google scholar
[29]
Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014, 7(3): 982
CrossRef Google scholar
[30]
Yang L, Wang J, Leung W W F. Lead iodide thin film crystallization control for high-performance and stable solution-processed perovskite solar cells. ACS Applied Materials & Interfaces, 2015, 7(27): 14614–14619
CrossRef Pubmed Google scholar
[31]
Wang F, Yu H, Xu H, Zhao N. HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells. Advanced Functional Materials, 2015, 25(7): 1120–1126
CrossRef Google scholar
[32]
Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H,Grätzel M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nature Chemistry, 2015, 7(9): 703–711
CrossRef Google scholar
[33]
Carnie M J, Charbonneau C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A. A one-step low temperature processing route for organolead halide perovskite solar cells. Chemical Communications (Cambridge), 2013, 49(72): 7893–7895
CrossRef Pubmed Google scholar
[34]
Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Jen A K. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Advanced Materials, 2014, 26(22): 3748–3754
CrossRef Pubmed Google scholar
[35]
Zhao Y, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. Journal of Physical Chemistry C, 2014, 118(18): 9412–9418
CrossRef Google scholar
[36]
Chang C Y, Chu C Y, Huang Y C, Huang C W, Chang S Y, Chen C A, Chao C Y, Su W F. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Applied Materials & Interfaces, 2015, 7(8): 4955–4961
CrossRef Pubmed Google scholar
[37]
Huang Y C, Tsao C S, Cho Y J, Chen K C, Chiang K M , Hsiao S Y , Chen C W , Su C J , Jeng U S , Lin H W . Insight into evolution, processing and performance of multilength-scale structures in planar heterojunction perovskite solar cells. Scientific Reports, 2015, 5:13657
CrossRef Google scholar
[38]
Edri E, Kirmayer S, Kulbak M, Hodes G, Cahen D. Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. Journal of Physical Chemistry Letters, 2014, 5(3): 429–433
CrossRef Pubmed Google scholar
[39]
Chueh C C, Liao C Y, Zuo F, Williams S T, Liang P W, Jen A K Y. The roles of alkyl halide additives in enhancing perovskite solar cell performance. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9058–9062
CrossRef Google scholar
[40]
Zhang H, Mao J, He H, Zhang D, Zhu H L, Xie F, Wong K S, Grätzel M, Choy W C H. A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells. Advanced Energy Materials, 2015, 5(23): 1501354
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1996 KB)

Accesses

Citations

Detail

Sections
Recommended

/