Silicon-plus photonics

Daoxin DAI, Yanlong YIN, Longhai YU, Hao WU, Di LIANG, Zhechao WANG, Liu LIU

PDF(582 KB)
PDF(582 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (3) : 436-449. DOI: 10.1007/s12200-016-0629-9
REVIEW ARTICLE
REVIEW ARTICLE

Silicon-plus photonics

Author information +
History +

Abstract

Silicon photonics has become very popular because of their compatibility with mature CMOS technologies. However, pure silicon is still very difficult to be utilized to obtain various photonic functional devices for large-scale photonic integration due to intrinsic properties. Silicon-plus photonics, which pluses other materials to break the limitation of silicon, is playing a very important role currently and in the future. In this paper, we give a review and discussion on the progresses of silicon-plus photonics, including the structures, devices and applications.

Keywords

silicon-plus / hybrid / plsamonic / photodetector / modulator / graphene / III-V

Cite this article

Download citation ▾
Daoxin DAI, Yanlong YIN, Longhai YU, Hao WU, Di LIANG, Zhechao WANG, Liu LIU. Silicon-plus photonics. Front. Optoelectron., 2016, 9(3): 436‒449 https://doi.org/10.1007/s12200-016-0629-9

References

[1]
Hochberg M, Baehr-Jones T. Towards fabless silicon photonics. Nature Photonics, 2010, 4(8): 492–494
CrossRef Google scholar
[2]
Asghari M, Krishnamoorthy A V. Silicon photonics: energy-efficient communication. Nature Photonics, 2011, 5(5): 268–270
CrossRef Google scholar
[3]
Guan X, Wu H, Dai D. Silicon hybrid nanoplasmonics for ultra-dense photonic integration. Frontiers of Optoelectronics, 2014, 7(3): 300–319
CrossRef Google scholar
[4]
Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express, 2006, 14(20): 9203–9210
CrossRef Pubmed Google scholar
[5]
Park H, Kuo Y H, Fang A W, Jones R, Cohen O, Paniccia M J, Bowers J E. A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector. Optics Express, 2007, 15(21): 13539–13546
CrossRef Pubmed Google scholar
[6]
Ishikawa Y, Wada K, Cannon D D, Liu J, Luan H C, Kimerling L C. Strain-induced band gap shrinkage in Ge grown on Si substrate. Applied Physics Letters, 2003, 82(13): 2044–2046
CrossRef Google scholar
[7]
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67
CrossRef Pubmed Google scholar
[8]
Gan X, Shiue R, Gao Y, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 2013, 7(11): 883–887
CrossRef Google scholar
[9]
Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T, Mueller T. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photonics, 2013, 7(11): 892–896
CrossRef Google scholar
[10]
Wang X, Cheng Z, Xu K, Tsang H K, Xu J. High-responsivity graphene/silicon-heterostructure waveguide photo-detectors. Nature Photonics, 2013, 7(11): 888–891
CrossRef Google scholar
[11]
Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
CrossRef Google scholar
[12]
Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, Van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J. High-speed plasmonic phase modulators. Nature Photonics, 2014, 8(3): 229–233
CrossRef Google scholar
[13]
Tien M C, Mizumoto T, Pintus P, Kromer H, Bowers J E. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets. Optics Express, 2011, 19(12): 11740–11745
CrossRef Pubmed Google scholar
[14]
De Cort W, Beeckman J, Claes T, Neyts K, Baets R. Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Optics Letters, 2011, 36(19): 3876–3878
CrossRef Pubmed Google scholar
[15]
Famà S, Colace L, Masini G, Assanto G, Luan H. High performance germanium-on-silicon detectors for optical communications. Applied Physics Letters, 2002, 81(4): 586–588
CrossRef Google scholar
[16]
Srinivasan S A, Pantouvaki M, Gupta S, Chen H T, Verheyen P, Lepage G, Roelkens G, Saraswat K, Thourhout D V, Absil P, Campenhout J V. 56 Gb/s germanium waveguide electro-absorption modulator. Journal of Lightwave Technology, 2016, 34(2): 419–424
[17]
Chen L, Dong P, Lipson M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Optics Express, 2008, 16(15): 11513–11518
CrossRef Pubmed Google scholar
[18]
Liu J, Camacho-Aguilera R, Bessette J T, Sun X, Wang X, Cai Y, Kimerling L C, Michel J. Ge-on-Si optoelectronics. Thin Solid Films, 2012, 520(8): 3354–3360
CrossRef Google scholar
[19]
Guo W, Date L, Pena V, Bao X, Merckling C, Waldron N, Collaert N, Caymax M, Sanchez E, Vancoille E, Barla K, Thean A, Eyben P, Vandervorst W. Selective metal–organic chemical vapor deposition growth of high quality GaAs on Si(001). Applied Physics Letters, 2014, 105(6): 062101-1–062101-3
CrossRef Google scholar
[20]
Merckling C, Waldron N, Jiang S, Guo W, Barla K, Heyns M, Collaert N, Thean A, Vandervorst W. Selective-area metal organic vapor-phase epitaxy of III–V on Si: what about defect density? ECS Transactions, 2014, 64(6): 513–521
CrossRef Google scholar
[21]
Wang Z, Tian B, Pantouvaki M, Guo W, Absil P, Campenhout J V, Merckling C, Thourhout D V. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photonics, 2015, 9: 837–842
[22]
Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nature Photonics, 2010, 4(5): 297–301
CrossRef Google scholar
[23]
Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622
CrossRef Google scholar
[24]
Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694
CrossRef Pubmed Google scholar
[25]
Hu Y, Pantouvaki M, Van Campenhout J, Brems S, Asselberghs I, Huyghebaert C, Absil P, Van Thourhout D. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser & Photonics Reviews, 2016, 10(2): 307–316
CrossRef Google scholar
[26]
Yu L, Xu Y, Shi Y, Dai D. Linear and nonlinear optical absorption of on-chip silicon-on-insulator nanowires with graphene. In: Proceedings of Asia Communications and Photonics Conference, 2012: AS1B. 3-1–AS1B. 3-3
[27]
Gu T, Petrone N, McMillan J F, van der Zande A, Yu M, Lo G Q, Kwong D L, Hone J, Wong C W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics, 2012, 6(8): 554–559
CrossRef Google scholar
[28]
Yu L, Zheng J, Xu Y, Dai D, He S. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits. ACS Nano, 2014, 8(11): 11386–11393
CrossRef Pubmed Google scholar
[29]
Lee J M, Kim D J, Kim G H, Kwon O K, Kim K J, Kim G. Controlling temperature dependence of silicon waveguide using slot structure. Optics Express, 2008, 16(3): 1645–1652
CrossRef Pubmed Google scholar
[30]
Pollnau M. Rare-earth-ion-doped channel waveguide lasers on silicon. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1602512-1–1602512-12
CrossRef Google scholar
[31]
Chen S, Shi Y, He S, Dai D. Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Optics Letters, 2016, 41(4): 836–839
Pubmed
[32]
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Super mode propagation in low index medium. In: Proceedings of Quantum Electronics and Laser Science Conference, 2007, JThD112-1–JThD112-2
[33]
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
CrossRef Google scholar
[34]
Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364
CrossRef Google scholar
[35]
Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
CrossRef Pubmed Google scholar
[36]
Dai D, He S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958–17966
CrossRef Pubmed Google scholar
[37]
Dai D, Shi Y, He S, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Optics Express, 2011, 19(14): 12925–12936
CrossRef Pubmed Google scholar
[38]
Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379–8393
CrossRef Pubmed Google scholar
[39]
Kim J T. CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits. IEEE Photonics Technology Letters, 2011, 23(20): 1481–1483
CrossRef Google scholar
[40]
Zhu S, Liow T Y, Lo G Q, Kwong D L. Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. Optics Express, 2011, 19(9): 8888–8902
CrossRef Pubmed Google scholar
[41]
Bian Y, Zheng Z, Zhao X, Liu L, Su Y L, Liu J, Zhu J, Zhou T. Hybrid plasmonic waveguide incorporating an additional semiconductor stripe for enhanced optical confinement in the gap region. Journal of Optics, 2013, 15(3): 035503-1–035503-9
CrossRef Google scholar
[42]
Amirhosseini A, Safian R. A hybrid plasmonic waveguide for the propagation of surface plasmon polariton at 1.55 mm on SOI substrate. IEEE Transactions on Nanotechnology, 2013, 12(6): 1031–1036
CrossRef Google scholar
[43]
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971–12979
CrossRef Pubmed Google scholar
[44]
Goykhman I, Desiatov B, Levy U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide. Applied Physics Letters, 2010, 97(14): 141106-1–141106-3
CrossRef Google scholar
[45]
Wu H, Guan X, Dai D. Ultracompact on-chip long-wave photodetector based on hybrid plasmonic waveguides. In: Proceedings of Piers, Session 1P4a SC2: Plasmonic Nanophotonics 1—Experiment, Measurement and Fabrication, 2014, 90
[46]
Niklaus F, Stemme G, Lu J Q, Gutmann R J. Adhesive wafer bonding. Journal of Applied Physics, 2006, 99(3): 031101-1–031101-28
[47]
Keyvaninia S, Muneeb M, Stanković S, Van Veldhoven P J, Van Thourhout D, Roelkens G. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Optical Materials Express, 2013, 3(1): 35–46
CrossRef Google scholar
[48]
Fu X, Cheng J, Huang Q, Hu Y, Xie W, Tassaert M, Verbist J, Ma K, Zhang J, Chen K, Zhang C, Shi Y, Bauwelinck J, Roelkens G, Liu L, He S. 5 ´ 20 Gb/s heterogeneously integrated III-V on silicon electro-absorption modulator array with arrayed waveguide grating multiplexer. Optics Express, 2015, 23(14): 18686–18693
CrossRef Pubmed Google scholar
[49]
Huang Q, Cheng J, Liu L, Tang Y, He S. Ultracompact tapered coupler for the Si/III-V heterogeneous integration. Applied Optics, 2015, 54(14): 4327–4332
CrossRef Pubmed Google scholar
[50]
Gösele U, Bluhm Y, Kästner G, Kopperschmidt P, Kräuter G, Scholz R, Schumacher A, Senz S, Tong Q Y, Huang L J, Chao Y L, Lee T H. Fundamental issues in wafer bonding. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 1999, 17(4): 1145–1152
CrossRef Google scholar
[51]
Liang D, Roelkens G, Baets R, Bowers J E. Hybrid integrated platforms for silicon photonics. Materials (Basel), 2010, 3(3): 1782–1802
[52]
Liang D, Bowers J E. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator (SOI) substrate. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2008, 26(4): 1560–1568
CrossRef Google scholar
[53]
Liang D, Fiorentino M, Okumura T, Chang H H, Spencer D T, Kuo Y H, Fang A W, Dai D, Beausoleil R G, Bowers J E. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Optics Express, 2009, 17(22): 20355–20364
CrossRef Pubmed Google scholar
[54]
Liang D, Fiorentino M, Srinivasan S, Todd S T, Kurczveil G, Bowers J E, Beausoleil R G. Optimization of hybrid silicon microring lasers. IEEE Photonics Journal, 2011, 3(3): 580–587
[55]
Liang D, Srinivasan S, Fiorentino M, Kurczveil G, Bowers J E, Beausoleil R G. Optimization of hybrid silicon microring lasers. IEEE Photonics Journal, 2011, 3(3): 580–587
[56]
Zhang C, Liang D, Kurczveil G, Bowers J E, Beausoleil R G. Thermal management of hybrid silicon ring lasers for high temperature operation. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 1–7
[57]
Zhang C, Liang D, Li C, Kurczveil G, Bowers J E, Beausoleil R G. High-speed hybrid silicon microring lasers. In: Proceedings of 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), 2015, 1–4
[58]
Ayers J E. Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization. New York: CRC Press, 2007
[59]
Hossain N, Sweeney S J, Rogowsky S, Ostendorf R, Wagner J, Liebich S, Zimprich M, Volz K, Kunert B, Stolz W. Reduced threshold current dilute nitride Ga(NAsP)/GaP quantum well lasers grown by MOVPE. Electronics Letters, 2011, 47(16): 931–933
CrossRef Google scholar
[60]
Reboul J R, Cerutti L, Rodriguez J B, Grech P, Tournié E. Continuouswave operation above room temperature of GaSb-based laser diodes grown on Si. Applied Physics Letters, 2011, 99(12): 121113-1–121113-3
CrossRef Google scholar
[61]
Chen R, Tran T T D, Ng K W, Ko W S, Chuang L C, Sedgwick F G, Chang-Hasnain C. Nanolasers grown on silicon. Nature Photonics, 2011, 5(3): 170–175
CrossRef Google scholar
[62]
Wang Z, Tian B, Paladugu M, Pantouvaki M, Le Thomas N, Merckling C, Guo W, Dekoster J, Van Campenhout J, Absil P, Van Thourhout D. Polytypic InP nanolaser monolithically integrated on (001) silicon. Nano Letters, 2013, 13(11): 5063–5069
CrossRef Pubmed Google scholar
[63]
Chen S M, Tang M C, Wu J, Jiang Q, Dorogan V G, Benamara M, Mazur Y I, Salamo G J, Seeds A J, Liu H. 1.3 mm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C. Electronics Letters, 2014, 50(20): 1467–1468
CrossRef Google scholar
[64]
Wang T, Liu H, Lee A, Pozzi F, Seeds A. 1.3-mm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Optics Express, 2011, 19(12): 11381–11386
CrossRef Pubmed Google scholar
[65]
del Alamo J A. Nanometre-scale electronics with III-V compound semiconductors. Nature, 2011, 479(7373): 317–323
CrossRef Pubmed Google scholar
[66]
Rouvière M, Halbwax M, Cercus J, Cassan E, Vivien L, Pascal D, Heitzmann M, Hartmann J, Laval S. Integration of germanium waveguide photodetectors for intrachip optical interconnects. Optical Engineering (Redondo Beach, Calif.), 2005, 44(7): 075402–075406
CrossRef Google scholar
[67]
Kang Y, Liu H, Morse M, Paniccia M J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y, Chen H, Sfar Zaoui W, Bowers J E, Beling A, McIntosh D C, Zheng X, Campbell J C. Monolithic Ge/Si avalanche photodiodes with 340 GHz gain-bandwidth product. Nature Photonics, 2009, 3(1): 59–63
CrossRef Google scholar
[68]
Koester S J, Schaub J D, Dehlinger G, Chu J O. Germanium-on-SOI infrared detectors for integrated photonic applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1489–1502
CrossRef Google scholar
[69]
Michel J, Liu J, Kimerling L C. High performance Ge-on-Si photodetectors. Nature Photonics, 2010, 4(8): 527–534
CrossRef Google scholar
[70]
Hawkins A R, Wu W, Abraham P, Streubel K, Bowers J E. High gain-bandwidth-product silicon heterointerface photodetector. Applied Physics Letters, 1997, 70(3): 303–305
CrossRef Google scholar
[71]
Dai D, Piels M, Bowers J E. Monolithic germanium/silicon photodetectors with decoupled structures: resonant APDs and UTC photodiodes. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 43–56
[72]
Duan N, Liow T Y, Lim A E, Ding L, Lo G Q. 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection. Optics Express, 2012, 20(10): 11031–11036
CrossRef Pubmed Google scholar
[73]
Virot L, Vivien L, Fédéli J M, Bogumilowicz Y, Hartmann J M, Bœuf F, Crozat P, Marris-Morini D, Cassan E. High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications. Photonics Research, 2013, 1(3): 140–147
CrossRef Google scholar
[74]
Dai D, Chen H, Bowers J E, Kang Y, Morse M, Paniccia M J. Equivalent circuit model of a waveguide-type Ge/Si avalanche photodetector. Physica Status Solidi, 2010, 7(10): 2532–2535
CrossRef Google scholar
[75]
Ramaswamy A, Piels M, Nunoya N, Yin T, Bowers J E. High power silicon-germanium photodiodes for microwave photonic applications. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3336–3343
CrossRef Google scholar
[76]
Piels M, Bowers J E. Si/Ge uni-traveling carrier photodetector. Optics Express, 2012, 20(7): 7488–7495
CrossRef Pubmed Google scholar
[77]
Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J. Ge-on-Si laser operating at room temperature. Optics Letters, 2010, 35(5): 679–681
Pubmed
[78]
Jenkins D W, Dow J D. Electronic properties of metastable GexSn1-<?Pub Caret?>x alloys. Physical Review B: Condensed Matter and Materials Physics, 1987, 36(15): 7994–8000
[79]
Low K L, Yang Y, Han G, Fan W, Yeo Y. Electronic band structure and effective mass parameters of Ge1−xSnx alloys. Journal of Applied Physics, 2012, 112(10): 103715-1–103715-9
[80]
Gupta S, Magyari-Köpe B, Nishi Y, Saraswat K C. Achieving direct band gap in germanium through integration of Sn alloying and external strain. Journal of Applied Physics, 2013, 113(7): 073707-1–073707-7
[81]
He G, Atwater H A. Interband transitions in SnxGe1x alloys. Physical Review Letters, 1997, 79(10): 1937–1940
[82]
Grzybowski G, Beeler R T, Jiang L, Smith D J, Kouvetakis J, Menéndez J. Next generation of Ge1−ySny (y= 0.01−0.09) alloys grown on Si (100) via Ge3H8 and SnD4: reaction kinetics and tunable emission. Applied Physics Letters, 2012, 101(7): 072105-1–072105-5
[83]
Chen R, Lin H, Huo Y, Hitzman C, Kamins T I, Harris J S. Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy. Applied Physics Letters, 2011, 99(18): 181125-1–181125-3
[84]
Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D. Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photonics, 2015, 9(2): 88–92
[85]
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9-10): 351–355
CrossRef Google scholar
[86]
Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nature Nanotechnology, 2009, 4(12): 839–843
CrossRef Pubmed Google scholar
[87]
Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q, Tang D, Loh K P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 2011, 4(3): 297–307
CrossRef Google scholar
[88]
Yu L, Dai D, He S. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Applied Physics Letters, 2014, 105(25): 251104-1–251104-5
CrossRef Google scholar
[89]
Yang B, Yang L, Hu R, Sheng Z, Dai D, Liu Q, He S. Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer. Journal of Lightwave Technology, 2009, 27(18): 4091–4096
CrossRef Google scholar
[90]
Koos C, Leuthold J, Freude W, Kohl M, Dalton L R, Bogaerts W, Giesecke A L, Lauermann M, Melikyan A, Koeber S, Wolf S, Weimann C, Muehlbrandt S, Koehnle K, Pfeifle J, Palmer R, Alloatti L, Elder D L, Wahlbrink T, Bolten J.Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. In: Proceedings of Optical Fiber Communication Conference and Exhition, 2015, Tu2A.1-1–Tu2A.1-3
[91]
Wang X, Xiao S, Zheng W, Wang F, Li Y, Hao Y, Jiang X, Wang M, Yang J. Athermal silicon arrayed waveguide grating with polymer-filled slot structure. Optics Communications, 2009, 282(14): 2841–2844
CrossRef Google scholar
[92]
Lee J M, Kim D J, Ahn H, Park S H, Kim G. Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer. Journal of Lightwave Technology, 2007, 25(8): 2236–2243
CrossRef Google scholar
[93]
Teng J, Dumon P, Bogaerts W, Zhang H, Jian X, Han X, Zhao M, Morthier G, Baets R. Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Optics Express, 2009, 17(17): 14627–14633
CrossRef Pubmed Google scholar
[94]
Lauermann M, Palmer R, Koeber S, Schindler P C, Korn D, Wahlbrink T, Bolten J, Waldow M, Elder D L, Dalton L R, Leuthold J, Freude W, Koos C. Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats. Optics Express, 2014, 22(24): 29927–29936
Pubmed
[95]
Koeber S, Palmer R, Lauermann M, Heni W, Elder D L, Korn D, Woessner M, Alloatti L, Koenig S, Schindler P, Yu H, Bogaerts W, Dalton L R, Freude W, Leuthold J, Koos C.Femtojoule electro-optic modulation using a silicon-organic hybrid device. Light: Science Application, 2015, 4(2): e255-1–e255-8
[97]
Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528
[96]
Korn D, Lauermann M, Koeber S, Appel P, Alloatti L, Palmer R, Dumon P, Freude W, Leuthold J, Koos C. Lasing in silicon-organic hybrid waveguides. Nature communications, 2016, 7: 10864-1–10864-9
[98]
Lauermann M, Wolf S, Palmer R, Bielik A, Altenhain L, Lutz J, Schmid R, Wahlbrink T, Bolten J, Giesecke A L, Freude W, Koos C.64 GBd operation of a silicon-organic hybrid modulator at elevated temperature. In: Proceedings of Optical Fiber Communication Conference and Exhibition, 2015: Tu2A.5-1–Tu2A.5-3

Acknowledgement

This work was supported partially by the National Natural Science Foundation of China (Grant Nos. 61422510, 11374263 and 61431166001), the Doctoral Fund of Ministry of Education of China (No. 20120101110094), the Fundamental Research Funds for the Central Universities.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(582 KB)

Accesses

Citations

Detail

Sections
Recommended

/