40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier

Michael J. CONNELLY, Lukasz KRZCZANOWICZ, Pascal MOREL, Ammar SHARAIHA, Francois LELARGE, Romain BRENOT, Siddharth JOSHI, Sophie BARBET

PDF(346 KB)
PDF(346 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (3) : 341-345. DOI: 10.1007/s12200-016-0628-x
RESEARCH ARTICLE
RESEARCH ARTICLE

40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier

Author information +
History +

Abstract

Differential quadrature phase shift keying (DQPSK) modulation is attractive in high-speed optical communications because of its resistance to fiber nonlinearities and more efficient use of fiber bandwidth compared to conventional intensity modulation schemes. Because of its wavelength conversion ability and phase preservation, semiconductor optical amplifier (SOA) four-wave mixing (FWM) has attracted much attention. We experimentally study wavelength conversion of 40 Gbit/s (20 Gbaud) non-return-to-zero (NRZ)-DQPSK data using FWM in a quantum dash SOA with 20 dB gain and 5 dBm output saturation power. Q factor improvement and eye diagram reshaping is shown for up to 3 nm pump-probe detuning and is superior to that reported for a higher gain bulk SOA.

Keywords

differential quadrature phase shift keying (DQPSK) / phase modulation / quantum-dash / semiconductor optical amplifier (SOA) / four-wave mixing (FWM) / wavelength conversion

Cite this article

Download citation ▾
Michael J. CONNELLY, Lukasz KRZCZANOWICZ, Pascal MOREL, Ammar SHARAIHA, Francois LELARGE, Romain BRENOT, Siddharth JOSHI, Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier. Front. Optoelectron., 2016, 9(3): 341‒345 https://doi.org/10.1007/s12200-016-0628-x

References

[1]
Gnauck A H, Winzer P J. Optical phase-shift-keyed transmission. Journal of Lightwave Technology, 2005, 23(1): 115–130
CrossRef Google scholar
[2]
Cho P S, Achiam Y, Levyyurista G, Margalit M, Gross Y, Khurgin J B. Investigation of SOA nonlinearities on the amplification of high spectral efficiency signals. In: Proceedings of Optical Fiber Communication Conference (OFC), 2004, 1: 211–212
[3]
Wang J, Kahn J M. Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection. Journal of Lightwave Technology, 2004, 22(2): 362–371
CrossRef Google scholar
[4]
Ho K P. Phase-Modulated Optical Communication Systems. Berlin: Springer, 2005
[5]
Connelly M J. Semiconductor Optical Amplifiers. Berlin: Springer, 2007
[6]
Bonk R, Huber G, Vallaitis T, Koenig S, Schmogrow R, Hillerkuss D, Brenot R, Lelarge F, Duan G H, Sygletos S, Koos C, Freude W, Leuthold J. Linear semiconductor optical amplifiers for amplification of advanced modulation formats. Optics Express, 2012, 20(9): 9657–9672
CrossRef Pubmed Google scholar
[7]
Akiyama T, Sugawara M, Arakawa Y. Quantum-dot semiconductor optical amplifiers. Proceedings of the IEEE, 2007, 95(9): 1757–1766
CrossRef Google scholar
[8]
Lelarge F, Dagens B, Renaudier J, Brenot R, Accard A, van Dijk F, Make D, Le Gouezigou O, Provost J, Poingt F, Landreau J, Drisse O, Derouin E, Rousseau B, Pommereau F, Duan G. Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 mm. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 111–124
CrossRef Google scholar
[9]
Zilkie A J, Meier J, Mojahedi M, Poole P J, Barrios P, Poitras D, Rotter T J, Yang C, Stintz A, Malloy K J, Smith P W E, Aitchison J S. Carrier dynamics of quantum-dot, quantum-dash, and quantum-well semiconductor optical amplifiers operating at 1.55 mm. IEEE Journal of Quantum Electronics, 2007, 43(11): 982–991
CrossRef Google scholar
[10]
Porzi C, Bogoni A, Contestabile G. Regeneration of DPSK signals in a saturated SOA. IEEE Photonics Technology Letters, 2012, 24(18): 1597–1599
CrossRef Google scholar
[11]
Porzi C, Bogoni A, Contestabile G. Regenerative wavelength conversion of DPSK signals through FWM in an SOA. IEEE Photonics Technology Letters, 2013, 25(2): 175–178
CrossRef Google scholar
[12]
Krzczanowicz L, Connelly M J. 40 Gb/s NRZ-DQPSK data all-optical wavelength conversion using four wave mixing in a bulk SOA. IEEE Photonics Technology Letters, 2013, 25(24): 2439–2441
CrossRef Google scholar
[13]
Matsuura M, Calabretta N, Raz O, Dorren H J S. Simultaneous multichannel wavelength conversion of 50-Gb/s NRZ-DQPSK signals with 100-GHz channel spacing using a quantum-dot SOA. In: Proceedings of 37th European Conference on Optical Communication (ECOC), 2011, 1–3
[14]
Contestabile G, Yoshida Y, Maruta A, Kitayama K. Coherent wavelength conversion in a quantum dot SOA. IEEE Photonics Technology Letters, 2013, 25(9): 791–794
CrossRef Google scholar
[15]
Contestabile G, Yoshida Y, Maruta A, Kitayama K. Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA. Optics Express, 2012, 20(25): 27902–27907
CrossRef Pubmed Google scholar

Acknowledgement

This research was supported by Science Foundation Ireland Investigator Grant 09/IN.1/I2641.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(346 KB)

Accesses

Citations

Detail

Sections
Recommended

/