Novel types of photonic band crystal high power and high brightness semiconductor lasers

Md. Jarez MIAH, Vladimir P. KALOSHA, Ricardo ROSALES, Dieter BIMBERG

PDF(2581 KB)
PDF(2581 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (2) : 225-237. DOI: 10.1007/s12200-016-0624-1
REVIEW ARTICLE
REVIEW ARTICLE

Novel types of photonic band crystal high power and high brightness semiconductor lasers

Author information +
History +

Abstract

A novel type of high power edge-emitting semiconductor laser (SL) with extended vertical photonic band crystal (PBC) waveguide was reviewed. Simulations predict narrow beam divergence, resulting from the thick PBC waveguide, to be independent of realistic variations of the growth parameters. Narrow ridge lasers fabricated along the simulations indeed demonstrate superior output power, narrow beam divergence, circular beam profile, excellent beam quality and very low astigmatism. Efficient fiber coupling decisive for most applications was thus eased. Stability of the laser under a wide range of operating temperature was demonstrated. Ultrashort pulses with few ps of duration at GHz repetition rates were generated by passively mode locking the lasers.

Keywords

semiconductor laser (SL) / edge-emitting laser / high brightness laser / narrow beam divergence / high peak power pulses

Cite this article

Download citation ▾
Md. Jarez MIAH, Vladimir P. KALOSHA, Ricardo ROSALES, Dieter BIMBERG. Novel types of photonic band crystal high power and high brightness semiconductor lasers. Front. Optoelectron., 2016, 9(2): 225‒237 https://doi.org/10.1007/s12200-016-0624-1

References

[1]
Inoue Y, Fujikawa S. Diode-pumped Nd:YAG laser producing 122-W CW power at 1.319 μm. IEEE Journal of Quantum Electronics, 2000, 36(6): 751–756
CrossRef Google scholar
[2]
Schulz W, Poprawe R. Manufacturing with novel high-power diode lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(4): 696–705
CrossRef Google scholar
[3]
Brauch U, Loosen P, Opower H. High-Power Diode Lasers: Fundamentals, Technology, Applications. In: Diehl R, ed. Berlin, Germany: Springer, 2000, 303–368
[4]
Hasler K H, Sumpf B, Adamiec P, Bugge F, Fricke J, Ressel P, Wenzel H, Erbert G, Tränkle G. 5-W DBR tapered lasers emitting at 1060 nm with a narrow spectral linewidth and a nearly diffraction-limited beam quality. IEEE Photonics Technology Letters, 2008, 20(19): 1648–1650
CrossRef Google scholar
[5]
Woods S. Understanding materials processing lasers. Laser-Technik-Journal, 2009, 6(5): 23–26
CrossRef Google scholar
[6]
Lambert R W, Ayling T, Hendry A F, Carson J M, Barrow D A, McHendry S, Scott C J, McKee A, Meredith W. Facet-passivation processes for the improvement of Al-containing semiconductor laser diodes. Journal of Lightwave Technology, 2006, 24(2): 956–961
CrossRef Google scholar
[7]
Murakami T, Ohtaki K, Matsubara H, Yamawaki T, Saito H, Isshiki K, Kokubo Y, Shima A, Kumabe H, Susaki W. A very narrow-beam AlGaAs laser with a thin tapered-thickness active layer (T3 laser). IEEE Journal of Quantum Electronics, 1987, 23(6): 712–719
CrossRef Google scholar
[8]
Yen S T, Lee C P. A novel cladding structure for semiconductor quantum-well lasers with small beam divergence and low threshold current. IEEE Journal of Quantum Electronics, 1996, 32(9): 1588–1595
CrossRef Google scholar
[9]
Lin G, Yen S T, Lee C P, Liu D C. Extremely small vertical far-field angle of InGaAs-AlGaAs quantum-well lasers with specially designed cladding structure. IEEE Photonics Technology Letters, 1996, 8(12): 1588–1590
CrossRef Google scholar
[10]
Yang G W, Xu J Y, Xu Z T, Zhang J M, Chen L H, Wang Q M. Theoretical investigation on quantum well lasers with extremely low vertical beam divergence and low threshold current. Journal of Applied Physics, 1998, 83(1): 8–14
CrossRef Google scholar
[11]
Smowton P M, Lewis G M, Yin M, Summers H D, Berry G, Button C C. 650-nm lasers with narrow far-field divergence with integrated optical mode expansion layers. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(3): 735–739
CrossRef Google scholar
[12]
Bogatov A P, Gushchik T I, Drakin A E, Nekrasov A P, Popovichev V V. Optimisation of waveguide parameters of laser InGaAs/AlGaAs/GaAs heterostructures for obtaining the maximum beam width in the resonator and the maximum output power. Quantum Electronics, 2008, 38(10): 935–939
CrossRef Google scholar
[13]
Crump P, Pietrzak A, Bugge F, Wenzel H, Erbert G, Tränkle G. 975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers. Applied Physics Letters, 2010, 96(13): 131110–131110–3
CrossRef Google scholar
[14]
Pietrzak A, Crump P, Wenzel H, Bugge F, Erbert G, Tränkle G. High power 1060 nm ridge waveguide lasers with low-index quantum barriers for narrow divergence angle. In: Proceedings of Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science. 2010, CWE2: 1–2
[15]
Pietrzak A, Crump P, Wenzel H, Erbert G. Combination of low-index quantum barrier and super large optical cavity designs for ultranarrow vertical far-fields from high-power broad-area lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1715–1722
CrossRef Google scholar
[16]
Shchukin V, Ledentsov N, Posilovic K, Kalosha V, Kettler T, Seidlitz D, Winterfeldt M, Bimberg D, Gordeev N Y, Karachinsky L Y, Novikov I I, Shernyakov Y M, Chunareva A V, Maximov M V, Bugge F, Weyers M. Tilted wave lasers: a way to high brightness sources of light. IEEE Journal of Quantum Electronics, 2011, 47(7): 1014–1027
CrossRef Google scholar
[17]
Kelemen M T, Weber J, Rinner F, Rogg J, Mikulla M, Weimann G. High-brightness 1040-nm tapered diode lasers. Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 4947: 252–260
CrossRef Google scholar
[18]
Kallenbach S, Kelemen M T, Aidam R, Lösch R, Kaufel G, Mikulla M, Weimann G. High-power high-brightness ridge-waveguide tapered diode lasers at 14xx nm. Proceedings of the Society for Photo-Instrumentation Engineers, 2005, 5738: 406–415
CrossRef Google scholar
[19]
Kelemen M T, Weber J, Kallenbach S, Pfahler C, Mikulla M, Weimann G. Astigmatism and beam quality of high-brightness tapered diode lasers. Proceedings of the Society for Photo-Instrumentation Engineers, 2004, 5452: 233–243
CrossRef Google scholar
[20]
Köhler B, Biesenbach J, Brand T, Haag M, Huke S, Noeske A, Seibold G, Behringer M, Luft J.High-brightness high-power kW-system with tapered diode laser bars. Proceedings of the Society for Photo-Instrumentation Engineers, 2005, 5711: 73–84
CrossRef Google scholar
[21]
Ledentsov N N, Shchukin V A. Novel concepts for injection lasers. Optical Engineering, 2002, 41(12): 3193–3203
CrossRef Google scholar
[22]
Bimberg D, Posilovic K, Kalosha V, Kettler T, Seidlitz D, Shchukin V A, Ledentsov N N, Gordeev N Yu, Karachinsky L Y, Novikov I I, Maximov M V, Shernyakov Y M, Chunareva A V, Bugge F, Weyers M. High-power high-brightness semiconductor lasers based on novel waveguide concepts. Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7616: 76161I
CrossRef Google scholar
[23]
Kalosha V P, Posilovic K, Kettler T, Shchukin V A, Ledentsov N N, Bimberg D. Simulations of the optical properties of broad-area edge-emitting semiconductor lasers at 1060 nm based on the PBC laser concept. Semiconductor Science and Technology, 2011, 26(7): 075014
CrossRef Google scholar
[24]
Maximov M V, Shernyakov Y M, Novikov I I, Kuznetsov S M, Karachinsky L Y, Gordeev N Y, Kalosha V P, Shchukin V A, Ledentsov N N. High-performance 640-nm-range GaInP-AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence. IEEE Journal of Quantum Electronics, 2005, 41(11): 1341–1348
CrossRef Google scholar
[25]
Novikov I I, Karachinsky L Ya, Maximov M V, Shernyakov Yu M, Kuznetsov S M, Gordeev N Yu, Shchukin V A, Kopev P S, Ledentsov N N, Ben-Ami U, Kalosha V P, Sharon A, Kettler T, Posilovic K, Bimberg D, Mikhelashvili V, Eisenstein G. Single mode cw operation of 658 nm AlGaInP lasers based on longitudinal photonic band gap crystal. Applied Physics Letters, 2006, 88(23): 231108
CrossRef Google scholar
[26]
Maximov M V, Shernyakov Yu M, Novikov I I, Kuznetsov S M, Karachinsky L Y, Gordeev N Y, Soshnikov I P, Musikhin Y G, Kryzhanovskaya N V, Sharon A, Ben-Ami U, Kalosha V P, Zakharov N D, Werner P, Kettler T, Posilovic K, Shchukin V A, Ledentsov N N, Bimberg D. Longitudinal photonic bandgap crystal laser diodes with ultra-narrow vertical beam divergence. In: Proceedings of Physics & Simulation of Optoelectronic Devices XIV. 2006, 6115: 611513
CrossRef Google scholar
[27]
Maximov M V, Shernyakov Y M, Novikov I I, Karachinsky L Y, Gordeev N Y, Ben-Ami U, Bortman-Arbiv D, Sharon A, Shchukin V A, Ledentsov N N, Kettler T, Posilovic K, Bimberg D. High-power low-beam divergence edge-emitting semiconductor lasers with 1- and 2-D photonic bandgap crystal waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(4): 1113–1122
CrossRef Google scholar
[28]
Posilovic K, Kettler T, Shchukin V A, Ledentsov N N, Pohl U W, Bimberg D, Fricke J, Ginolas A, Erbert G, Tränkle G, Jönsson J, Weyers M. Ultrahigh-brightness 850 nm GaAs/AlGaAs photonic crystal laser diodes. Applied Physics Letters, 2008, 93(22): 221102
CrossRef Google scholar
[29]
Novikov I I, Gordeev N Yu, Shernyakov Y M, Kiselev Yu Yu, Maximov M V, Kopev P S, Sharon A, Duboc R, Arbiv D B, Ben-Ami U, Shchukin V A, Ledentsov N N. High-power single mode (>>1 W) continuous wave operation of longitudinal photonic band crystal lasers with a narrow vertical beam divergence. Applied Physics Letters, 2008, 92(10): 103515
CrossRef Google scholar
[30]
Kettler T, Posilovic K, Karachinsky L Y, Ressel P, Ginolas A, Fricke J, Pohl U W, Shchukin V A, Ledentsov N N, Bimberg D, Jönsson J, Weyers M, Erbert G, Tränkle G. High-brightness and ultranarrow-beam 850-nm GaAs/AlGaAs photonic band crystal lasers and single-mode arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 901–908
CrossRef Google scholar
[31]
Posilovic K, Kalosha V P, Winterfeldt M, Schulze J H, Quandt D, Germann T D, Strittmatter A, Bimberg D, Pohl J, Weyers M. High-power low-divergence 1060 nm photonic crystal laser diodes based on quantum dots. Electronics Letters, 2012, 48(22): 1419–1420
CrossRef Google scholar
[32]
Miah M J, Kettler T, Posilovic K, Kalosha V P, Skoczowsky D, Rosales R, Bimberg D, Pohl J, Weyers M. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area. Applied Physics Letters, 2014, 105(15): 151105
CrossRef Google scholar
[33]
Rosales R, Kalosha V P, Posilovic K, Miah M J, Bimberg D, Pohl J, Weyers M. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime. Applied Physics Letters, 2014, 105(16): 161101
CrossRef Google scholar
[34]
Miah M J, Kettler T, Kalosha V P, Posilovic K, Bimberg D, Pohl J, Weyers M. High temperature operation of 1060-nm high-brightness photonic band crystal lasers with very low astigmatism. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 4900206
[35]
Kalosha V P, Bimberg D. Device comprising a high brightness broad-area edge-emitting semiconductor laser and method of making the same. 2014, U.S. patent application, US20150288147
[36]
Numai T. Fundamentals of Semiconductor Lasers. In: Rhodes W T, ed. Berlin, Germany: Springer, 2004, 97–100
[37]
Agrawal G P, Dutta N K. Semiconductor Lasers. 3rd ed. Boston, MA, USA: Kluwer, 2001, 132–139
[38]
Wenzel H, Bugge F, Dallmer M, Dittmar F, Fricke J, Hasler K H, Erbert G. Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence. IEEE Photonics Technology Letters, 2008, 20(3): 214–216
CrossRef Google scholar
[39]
Tai K, Yang L, Wang Y H, Wynn J D, Cho A Y. Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers. Applied Physics Letters, 1990, 56(25): 2496–2498
CrossRef Google scholar
[40]
Wenzel H, Dallmer M, Erbert G. Thermal lensing in high-power ridge-waveguide lasers. Optical and Quantum Electronics, 2008, 40(5): 379–384
CrossRef Google scholar
[41]
Sellin R L, Ribbat C, Bimberg D, Rinner F, Konstanzer H, Kelemen M T, Mikulla M. High-reliability MOCVD-grown quantum dot laser. Electronics Letters, 2002, 38(16): 883–884
CrossRef Google scholar
[42]
Kalosha V P, Posilovic K, Bimberg D. Lateral-longitudinal modes of high-power inhomogeneous waveguide Lasers. IEEE Journal of Quantum Electronics, 2012, 48(2): 123–128
CrossRef Google scholar

Acknowledgements

The authors acknowledge support of the German Research Council (DFG) within CRC 787. We are grateful to T. Kettler for laser processing, J. Pohl and M. Weyers for growth of the laser structures.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2581 KB)

Accesses

Citations

Detail

Sections
Recommended

/