Manipulating optical vortices using integrated photonics

Ning ZHANG, Kenan CICEK, Jiangbo ZHU, Shimao LI, Huanlu LI, Marc SOREL, Xinlun CAI, Siyuan YU

PDF(1350 KB)
PDF(1350 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (2) : 194-205. DOI: 10.1007/s12200-016-0623-2
REVIEW ARTICLE
REVIEW ARTICLE

Manipulating optical vortices using integrated photonics

Author information +
History +

Abstract

Optical vortices (OVs) refer to a class of cylindrical optical modes with azimuthally varying phase terms arising either from polarization rotation or from the angular projection of the wave vector that at the quantum level corresponds to photon spin or orbital angular momenta. OVs have attracted the attention of researchers in many areas of optics and photonics, as their potential applications range from optical communications, optical manipulation, imaging, sensing, to quantum information. In recent years, integrated photonics has becomes an effective method of manipulating OVs. In this paper, the theoretical framework and experimental progress of integrated photonics for the manipulation of OVs were reviewed.

Keywords

optical vortex / orbital angular momentum / angular grating / micro-ring resonator

Cite this article

Download citation ▾
Ning ZHANG, Kenan CICEK, Jiangbo ZHU, Shimao LI, Huanlu LI, Marc SOREL, Xinlun CAI, Siyuan YU. Manipulating optical vortices using integrated photonics. Front. Optoelectron., 2016, 9(2): 194‒205 https://doi.org/10.1007/s12200-016-0623-2

References

[1]
Poynting J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 1909, 82(557): 560–567
CrossRef Google scholar
[2]
Beth R A. Mechanical detection and measurement of the angular momentum of light. Physical Review, 1936, 50(2): 115–125
CrossRef Google scholar
[3]
Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A., 1992, 45(11): 8185–8189
CrossRef Pubmed Google scholar
[4]
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
CrossRef Google scholar
[5]
Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548
CrossRef Pubmed Google scholar
[6]
Wang J, Liu J, Lv X, Zhu L, Wang D, Li S, Wang A, Zhao Y, Long Y, Du J, Hu X, Zhou N, Chen S, Fang L, Zhang F. Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals. In: Proceedings of European Conference on Optical Communication (ECOC), 2015
[7]
Shu J, Chen Z, Pu J, Zhu J, Liu D. Tight focusing of partially coherent and radiallly polarized vortex beams. Optics Communications, 2013, 295(10): 5–10
CrossRef Google scholar
[8]
Edfors O, Johansson A J. Is orbital angular momentum (OAM) based radio communication an unexploited area? IEEE Transactions on Antennas & Propagation, 2012, 60(2): 1126–1131
CrossRef Google scholar
[9]
Brunet C, Vaity P, Messaddeq Y, LaRochelle S, Rusch L A. Design, fabrication and validation of an OAM fiber supporting 36 states. Optics Express, 2014, 22(21): 26117–26127
CrossRef Pubmed Google scholar
[10]
Ung B, Vaity P, Wang L, Messaddeq Y, Rusch L A, LaRochelle S. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Optics Express, 2014, 22(15): 18044–18055
CrossRef Pubmed Google scholar
[11]
Padgett M J, Allen L. The angular momentum of light: optical spanners and the rotational frequency shift. Optical and Quantum Electronics, 1999, 31(1): 1–12
CrossRef Google scholar
[12]
Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Physical Review Letters, 2015, 114(5): 050502-1–050502-5
CrossRef Pubmed Google scholar
[13]
Han Y J, Liao G Q, Chen L M, Li Y T, Wang W M, Zhang J. High-order optical vortex harmonics generated by relativistic femtosecond laser pulse. Chinese Physics B, 2015, 24(6): 065202
CrossRef Google scholar
[14]
Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456
CrossRef Pubmed Google scholar
[15]
Heckenberg N R, McDuff R, Smith C P, White A G. Generation of optical phase singularities by computer-generated holograms. Optics Letters, 1992, 17(3): 221–223
CrossRef Pubmed Google scholar
[16]
Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, 1994, 112(5-6): 321–327
CrossRef Google scholar
[17]
Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905-1–163905-4
CrossRef Pubmed Google scholar
[18]
Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877
CrossRef Pubmed Google scholar
[19]
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
CrossRef Pubmed Google scholar
[20]
Snyder A W, Love J D. Optical Waveguide Theory. Berlin: Springer, 1983, 12(3): 1–37
[21]
Wu C, Makino T, Glinski J, Maciejko R, Najafi S I. Self-consistent coupled-wave theory for circular gratings on planar dielectric waveguides. Journal of Lightwave Technology, 1991, 9(10): 1264–1277
[22]
Jordan R H, Hall D G, King O, Wicks G, Rishton S. Lasing behavior of circular grating surface-emitting semiconductor lasers. Journal of the Optical Society of America B, 1997, 14(2):449–453
CrossRef Google scholar
[23]
Barlow G F, Shore A, Turnbull G A, Samuel I. Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser. Journal of the Optical Society of America B, 2004, 21(12): 2142–2150
CrossRef Google scholar
[24]
Scheuer J, Green W M, DeRose G A, Yariv A. Lasing from a circular Bragg nanocavity with an ultrasmall modal volume. Applied Physics Letters, 2005, 86(25): 251101-1–251101-3
CrossRef Google scholar
[25]
Scheuer J, Green W M, Derose G A, Yariv A. InGaAsP annular Bragg lasers: theory, applications, and modal properties. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(2): 476–484
[26]
Doerr C R, Buhl L L. Circular grating coupler for creating focused azimuthally and radially polarized beams. Optics Letters, 2011, 36(7): 1209–1211
CrossRef Pubmed Google scholar
[27]
Scheuer J. Radial Bragg lasers: optimal design for minimal threshold levels and enhanced mode discrimination. Journal of the Optical Society of America B, 2007, 24(9): 2178–2184
CrossRef Google scholar
[28]
Liang G, Liang H, Zhang Y, Li L, Davies A G, Linfield E, Yu S F, Liu H C, Wang Q J. Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers . Optics Express, 2013, 21(26): 31872–31882
CrossRef Pubmed Google scholar
[29]
Fujita M, Baba T. Microgear laser. Applied Physics Letters, 2002, 80(12): 2051–2053
CrossRef Google scholar
[30]
Zhang Z, Dainese M, Wosinski L, Qiu M. Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling. Optics Express, 2008, 16(7): 4621–4630
CrossRef Pubmed Google scholar
[31]
Arbabi A, Goddard L L. Grating assisted mode coupling in microring resonators. In: Proceedings of IEEE Photonics Conference (IPC). 2013, 434–435
[32]
Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366
CrossRef Pubmed Google scholar
[33]
Greene P L, Hall D G. Effects of radiation on circular-grating DFB lasers I. coupled-mode equations. IEEE Journal of Quantum Electronics,2001, 37(3): 353–364
CrossRef Google scholar
[34]
Huy K P, Morand A, Amans D, Benech P. Analytical study of the whispering-gallery mode in two-dimensional microgear cavity using coupled-mode theory. Journal of the Optical Society of America B, 2005, 22(8): 1793–1803
CrossRef Google scholar
[35]
Sun X, Yariv A. Modal properties and modal control in vertically emitting annular Bragg lasers. Optics Express, 2007, 15(25): 17323–17333
CrossRef Pubmed Google scholar
[36]
Fujita M, Baba T. Proposal and finite-difference time-domain simulation of whispering gallery mode microgear cavity. IEEE Journal of Quantum Electronics, 2001, 37(10): 1253–1258
CrossRef Google scholar
[37]
Zhu J, Cai X, Chen Y, Yu S. Theoretical model for angular grating-based integrated optical vortex beam emitters. Optics Letters, 2013, 38(8): 1343–1345
CrossRef Pubmed Google scholar
[38]
Yu S, Cai X, Zhang N. High index contrast integrated optics in the cylindrical coordinate. In: Proceeding of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2015
[39]
Streifer W, Scifres D R, Burnham R D. Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and Waveguides-I. IEEE Journal of Quantum Electronics, 1976, 12(7): 422–428
CrossRef Google scholar
[40]
Streifer W, Burnham R D, Scifres D R. Analysis of grating-coupled radiation in GaAs: GaAIAs lasers and waveguides II. blazing effects. IEEE Journal of Quantum Electronics, 1976, 12(8): 494–499
CrossRef Google scholar
[41]
Streifer W, Scifres D R, Burnham R D. Coupled wave analysis of DFB and DBR lasers. IEEE Journal of Quantum Electronics, 1977, 13(4): 134–141
CrossRef Google scholar
[42]
Hardy A, Welch D F, Streifer W. Analysis of second-order gratings. IEEE Journal of Quantum Electronics, 1989, 25(10): 2096–2105
CrossRef Google scholar
[43]
Watson G N. A treatise on the theory of Bessel functions. Nature, 1945, (3955):190–191
[44]
Strain M J, Cai X, Wang J, Zhu J, Phillips D B, Chen L, Lopez-Garcia M, O’Brien J L, Thompson M G, Sorel M, Yu S. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nature Communications, 2014, 5: 4856
CrossRef Pubmed Google scholar
[45]
Liu J, Li S, Zhu L, Klitis C, Chen Y, Wang A, Li S, Long Y, Zheng S, Chen S, Sorel M. Demonstration of few mode fiber transmission link seeded by a silicon photonic integrated optical vortex emitter. In: Proceeding of European Conference on Optical Communication (ECOC), 2015
[46]
Moreno I, Davis J A, Ruiz I, Cottrell D M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Optics Express, 2010, 18(7): 7173–7183
CrossRef Pubmed Google scholar
[47]
Zhu J, Chen Y, Zhang Y, Cai X, Yu S. Spin and orbital angular momentum and their conversion in cylindrical vector vortices. Optics Letters, 2014, 39(15): 4435–4438
CrossRef Pubmed Google scholar
[48]
Xiao Q S, Klitis C, Li S M, Chen Y Y, Cai X L, Sorel M, Yu S Y. Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings. Optics Express, 2016, 24(4): 3168–3176
CrossRef Google scholar
[49]
Li H, Phillips D B, Wang X, Ho Y L, Chen L, Zhou X, Zhu J, Yu S, Cai X. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica, 2015, 2(6): 547–552
CrossRef Google scholar

Acknowledgements

The authors wish to acknowledge support by the National Basic Research Program of China (No. 2014CB340000), the National Natural Science Foundation of China-Key Research Project (Grant No. 61490715), and the EU Horizon2020 program under project ROAM.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1350 KB)

Accesses

Citations

Detail

Sections
Recommended

/