Microwave photonics connected with microresonator frequency combs

Xiaoxiao XUE, Andrew M. WEINER

PDF(1915 KB)
PDF(1915 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (2) : 238-248. DOI: 10.1007/s12200-016-0621-4
REVIEW ARTICLE
REVIEW ARTICLE

Microwave photonics connected with microresonator frequency combs

Author information +
History +

Abstract

Microresonator frequency combs (microcombs) are very promising as ultra-compact broadband sources for microwave photonic applications. Conversely, microwave photonic techniques are also employed intensely in the study of microcombs to reveal and control the comb formation dynamics. In this paper, we reviewed the microwave photonic techniques and applications that are connected with microcombs. The future research directions of microcomb-based microwave photonics were also discussed.

Keywords

microwave photonics / optical frequency comb / microresonator / Kerr effect / four-wave mixing

Cite this article

Download citation ▾
Xiaoxiao XUE, Andrew M. WEINER. Microwave photonics connected with microresonator frequency combs. Front. Optoelectron., 2016, 9(2): 238‒248 https://doi.org/10.1007/s12200-016-0621-4

References

[1]
Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R, Kippenberg T J. Optical frequency comb generation from a monolithic microresonator. Nature, 2007, 450(7173): 1214–1217
CrossRef Pubmed Google scholar
[2]
Del’Haye P, Herr T, Gavartin E, Gorodetsky M L, Holzwarth R, Kippenberg T J. Octave spanning tunable frequency comb from a microresonator. Physical Review Letters, 2011, 107(6): 063901
CrossRef Pubmed Google scholar
[3]
Okawachi Y, Saha K, Levy J S, Wen Y H, Lipson M, Gaeta A L. Octave-spanning frequency comb generation in a silicon nitride chip. Optics Letters, 2011, 36(17): 3398–3400
CrossRef Pubmed Google scholar
[4]
Levy J S, Gondarenko A, Foster M A, Turner-Foster A C, Gaeta A L, Lipson M. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photonics, 2010, 4(1): 37–40
CrossRef Google scholar
[5]
Razzari L, Duchesne D, Ferrera M, Morandotti R, Chu S, Little B E, Moss D J. CMOS-compatible integrated optical hyperparametric oscillator. Nature Photonics, 2010, 4(1): 41–45
CrossRef Google scholar
[6]
Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555–559
CrossRef Pubmed Google scholar
[7]
Papp S B, Del’Haye P, Diddams S A. Mechanical control of a microrod-resonator optical frequency comb. Physical Review X, 2013, 3(3): 031003
CrossRef Google scholar
[8]
Savchenkov A A, Matsko A B, Ilchenko V S, Solomatine I, Seidel D, Maleki L. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Physical Review Letters, 2008, 101(9): 093902
CrossRef Pubmed Google scholar
[9]
Grudinin I S, Baumgartel L, Yu N. Frequency comb from a microresonator with engineered spectrum. Optics Express, 2012, 20(6): 6604–6609
CrossRef Pubmed Google scholar
[10]
Wang C Y, Herr T, Del’Haye P, Schliesser A, Hofer J, Holzwarth R, Hänsch T W, Picqué N, Kippenberg T J. Mid-infrared optical frequency combs at 2.5 mm based on crystalline microresonators. Nature Communications, 2013, 4: 1345
CrossRef Pubmed Google scholar
[11]
Ilchenko V S, Savchenkov A A, Matsko A B, Maleki L. Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator. Optical Engineering (Redondo Beach, Calif.), 2014, 53(12):122607
CrossRef Google scholar
[12]
Jung H, Xiong C, Fong K Y, Zhang X, Tang H X. Optical frequency comb generation from aluminum nitride microring resonator. Optics Letters, 2013, 38(15): 2810–2813
CrossRef Pubmed Google scholar
[13]
Hausmann B J M, Bulu I, Venkataraman V, Deotare P, Lončar M. Diamond nonlinear photonics. Nature Photonics, 2014, 8(5): 369–374
CrossRef Google scholar
[14]
Griffith A G, Lau R K, Cardenas J, Okawachi Y, Mohanty A, Fain R, Lee Y H, Yu M, Phare C T, Poitras C B, Gaeta A L, Lipson M. Silicon-chip mid-infrared frequency comb generation. Nature Communications, 2015, 6: 6299
CrossRef Pubmed Google scholar
[15]
Levy J S, Saha K, Okawachi Y, Foster M, Gaeta A, Lipson M. High-performance silicon-nitride-based multiple-wavelength source. IEEE Photonics Technology Letters, 2012, 24(16): 1375–1377
CrossRef Google scholar
[16]
Wang P H, Ferdous F, Miao H, Wang J, Leaird D E, Srinivasan K, Chen L, Aksyuk V, Weiner A M. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Optics Express, 2012, 20(28): 29284–29295
CrossRef Pubmed Google scholar
[17]
Pfeifle J, Brasch V, Lauermann M, Yu Y, Wegner D, Herr T, Hartinger K, Schindler P, Li J, Hillerkuss D, Schmogrow R, Weimann C, Holzwarth R, Freude W, Leuthold J, Kippenberg T J, Koos C. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 2014, 8(5): 375–380
CrossRef Pubmed Google scholar
[18]
Pfeifle J, Coillet A, Henriet R, Saleh K, Schindler P, Weimann C, Freude W, Balakireva I V, Larger L, Koos C, Chembo Y K. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. Physical Review Letters, 2015, 114(9): 093902
CrossRef Pubmed Google scholar
[19]
Savchenkov A A, Eliyahu D, Liang W, Ilchenko V S, Byrd J, Matsko A B, Seidel D, Maleki L. Stabilization of a Kerr frequency comb oscillator. Optics Letters, 2013, 38(15): 2636–2639
CrossRef Pubmed Google scholar
[20]
Papp S B, Beha K, Del’Haye P, Quinlan F, Lee H, Vahala K J, Diddams S A. Microresonator frequency comb optical clock. Optica, 2014, 1(1): 10–14
CrossRef Google scholar
[21]
Liang W, Eliyahu D, Ilchenko V S, Savchenkov A A, Matsko A B, Seidel D, Maleki L. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nature Communications, 2015, 6: 7957
CrossRef Pubmed Google scholar
[22]
Xue X, Xuan Y, Kim H J, Wang J, Leaird D E, Qi M, Weiner A M. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. Journal of Lightwave Technology, 2014, 32(20): 3557–3565
CrossRef Google scholar
[23]
Nguyen T G, Shoeiby M, Chu S T, Little B E, Morandotti R, Mitchell A, Moss D J. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Optics Express, 2015, 23(17): 22087–22097
CrossRef Pubmed Google scholar
[24]
Maiman T H. Stimulated optical radiation in ruby masers. Nature, 1960, 187(4736): 493–494
CrossRef Google scholar
[25]
Blumenthal R H. Design of a microwave frequency light modulator. Proceedings of the IRE, 1962, 50(4): 452–456
[26]
Riesz R P. High speed semiconductor photodiodes. Review of Scientific Instruments, 1962, 33(9): 994–998
CrossRef Google scholar
[27]
Seeds A J. Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 877–887
CrossRef Google scholar
[28]
Seeds A J, Williams K J. Microwave photonics. Journal of Lightwave Technology, 2006, 24(12): 4628–4641
CrossRef Google scholar
[29]
Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330
CrossRef Google scholar
[30]
Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335
CrossRef Google scholar
[31]
Capmany J, Li G, Lim C, Yao J. Microwave Photonics: current challenges towards widespread application. Optics Express, 2013, 21(19): 22862–22867
CrossRef Pubmed Google scholar
[32]
Marpaung D, Roeloffzen C, Heideman R, Leinse A, Sales S, Capmany J. Integrated microwave photonics. Laser & Photonics Reviews, 2013, 7(4): 506–538
CrossRef Google scholar
[33]
Capmany J, Doménech D, Muñoz P. Graphene integrated microwave photonics. Journal of Lightwave Technology, 2014, 32(20): 3785–3796
CrossRef Google scholar
[34]
Marpaung D, Pagani M, Morrison B, Eggleton B J. Nonlinear integrated microwave photonics. Journal of Lightwave Technology, 2014, 32(20): 3421–3427
CrossRef Google scholar
[35]
Optical Frequency Combs. http://www.nist.gov/public_affairs/releases/frequency_combs.cfm
[36]
Ye J, Cundiff S T. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. Boston, MA, USA: Springer, 2005
[37]
Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser & Photonics Reviews, 2014, 8(3): 368–393
CrossRef Google scholar
[38]
Carmon T, Yang L, Vahala K. Dynamical thermal behavior and thermal self-stability of microcavities. Optics Express, 2004, 12(20): 4742–4750
CrossRef Pubmed Google scholar
[39]
Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H. Laser phase and frequency stabilization using an optical resonator. Applied Physics B, Lasers and Optics, 1983, 31(2): 97–105
CrossRef Google scholar
[40]
Black E D. An introduction to Pound–Drever–Hall laser frequency stabilization. American Journal of Physics, 2001, 69(1): 79–87
CrossRef Google scholar
[41]
Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, Kippenberg T J. Temporal solitons in optical microresonators. Nature Photonics, 2014, 8(2): 145–152
CrossRef Google scholar
[42]
Xue X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M, Weiner A M. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photonics, 2015, 9(9): 594–600
CrossRef Google scholar
[43]
Arcizet O, Schliesser A, Del’Haye P, Holzwarth R, Kippenberg T J. Optical frequency comb generation in monolithic microresonators. In: Matsko A B, ed. Practical Applications of Microresonators in Optics and Photonics . Boca Raton, FL, USA: CRC press, 2009, 483–506
[44]
Wang P H, Xuan Y, Xue X, Liu Y. Frequency comb-enhanced coupling in silicon nitride microresonators. In: Proceedings of IEEE Conference on Lasers and Electro-Optics (CLEO), 2015
[45]
Ferdous F, Miao H, Leaird D E, Srinivasan K, Wang J, Chen L, Varghese L T, Weiner A M. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photonics, 2011, 5(12): 770–776
CrossRef Google scholar
[46]
Herr T, Hartinger K, Riemensberger J, Wang C Y, Gavartin E, Holzwarth R, Gorodetsky M L, Kippenberg T J. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 2012, 6(7): 480–487
CrossRef Google scholar
[47]
Papp S B, Del’Haye P, Diddams S A. Parametric seeding of a microresonator optical frequency comb. Optics Express, 2013, 21(15): 17615–17624
CrossRef Pubmed Google scholar
[48]
Marian A, Stowe M C, Lawall J R, Felinto D, Ye J. United time-frequency spectroscopy for dynamics and global structure. Science, 2004, 306(5704): 2063–2068
CrossRef Pubmed Google scholar
[49]
Maric M, McFerran J J, Luiten A N. Frequency-comb spectroscopy of the D1 line in laser-cooled rubidium. Physical Review A., 2008, 77(3): 032502
CrossRef Google scholar
[50]
Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates C W, Diddams S A. Generation of ultrastable microwaves via optical frequency division. Nature Photonics, 2011, 5(7): 425–429
CrossRef Google scholar
[51]
Savchenkov A A, Matsko A B, Strekalov D, Mohageg M, Ilchenko V S, Maleki L. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Physical Review Letters, 2004, 93(24): 243905
CrossRef Pubmed Google scholar
[52]
Savchenkov A A, Rubiola E, Matsko A B, Ilchenko V S, Maleki L. Phase noise of whispering gallery photonic hyper-parametric microwave oscillators. Optics Express, 2008, 16(6): 4130–4144
CrossRef Pubmed Google scholar
[53]
Matsko A B, Maleki L. On timing jitter of mode locked Kerr frequency combs. Optics Express, 2013, 21(23): 28862–28876
CrossRef Pubmed Google scholar
[54]
Matsko A B, Maleki L. Noise conversion in Kerr comb RF photonic oscillators. Journal of the Optical Society of America. B, Optical Physics, 2015, 32(2): 232–240
CrossRef Google scholar
[55]
Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. Journal of Lightwave Technology, 2006, 24(1): 201–229
CrossRef Google scholar
[56]
Minasian R A. Photonic signal processing of microwave signals. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2): 832–846
CrossRef Google scholar
[57]
Capmany J, Mora J, Gasulla I, Sancho J, Lloret J, Sales S. Microwave photonic signal processing. Journal of Lightwave Technology, 2013, 31(4): 571–586
CrossRef Google scholar
[58]
Supradeepa V R, Long C M, Wu R, Ferdous F, Hamidi E, Leaird D E, Weiner A M. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nature Photonics, 2012, 6(3): 186–194
CrossRef Google scholar
[59]
Song M, Long C M, Wu R, Seo D, Leaird D E, Weiner A M. Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs. IEEE Photonics Technology Letters, 2011, 23(21): 1618–1620
CrossRef Google scholar
[60]
Hamidi E, Leaird D E, Weiner A M. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3269–3278
CrossRef Google scholar

Acknowledgements

This work was supported in part by the Air Force Office of Scientific Research under grant FA9550-15-1-0211, from the DARPA PULSE program through grant W31P40-13-1-0018 from AMRDEC, and from the National Science Foundation under grant ECCS-1509578.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1915 KB)

Accesses

Citations

Detail

Sections
Recommended

/