Progress on mid-IR graphene photonics and biochemical applications

Zhenzhou CHENG, Changyuan QIN, Fengqiu WANG, Hao HE, Keisuke GODA

PDF(1116 KB)
PDF(1116 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (2) : 259-269. DOI: 10.1007/s12200-016-0618-z
REVIEW ARTICLE
REVIEW ARTICLE

Progress on mid-IR graphene photonics and biochemical applications

Author information +
History +

Abstract

Mid-infrared (mid-IR) (2-20 μm) photonics has numerous chemical and biologic “fingerprint” sensing applications due to characteristic vibrational transitions of molecules in the mid-IR spectral region. Unfortunately, compared to visible light and telecommunication band wavelengths, photonic devices and applications have been difficult to develop at mid-IR wavelengths because of the intrinsic limitation of conventional materials. Breaking a new ground in the mid-IR science and technology calls for revolutionary materials. Graphene, a single atom layer of carbon arranged in a honey-comb lattice, has various promising optical and electrical properties because of its linear dispersion band structure and zero band gap features. In this review article, we discuss recent research developments on mid-IR graphene photonics, in particular ultrafast lasers and photodetectors. Graphene-photonics-based biochemical applications, such as plasmonic sensing, photodynamic therapy, and florescence imaging are also reviewed.

Keywords

mid-infrared (mid-IR) / graphene / lasers / photodetectors / optical sensing and sensors / photodynamic therapy / spectroscopy / fluorescence and luminescence

Cite this article

Download citation ▾
Zhenzhou CHENG, Changyuan QIN, Fengqiu WANG, Hao HE, Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications. Front. Optoelectron., 2016, 9(2): 259‒269 https://doi.org/10.1007/s12200-016-0618-z

References

[1]
Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs. Nature Photonics, 2012, 6(7): 440–449
CrossRef Google scholar
[2]
Jackson S D. Towards high-power mid-infrared emission from a fibre laser. Nature Photonics, 2012, 6(7): 423–431
CrossRef Google scholar
[3]
Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fire lasers. Nature Photonics, 2013, 7(11): 842–845
CrossRef Google scholar
[4]
Keuleyan S, Lhuillier E, Brajuskovic V, Guyot-Sionnest P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nature Photonics, 2011, 5(8): 489–493
CrossRef Google scholar
[5]
Novoselv K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004 , 306(5696): 666–669
[6]
Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622
CrossRef Google scholar
[7]
Xia F, Yan H, Avouris P. The interaction of light and graphene: basics, devices, and applications. Proceedings of the IEEE, 2013, 101(7): 1717–1731
CrossRef Google scholar
[8]
Ostojic G N, Zaric S, Kono J, Strano M S, Moore V C, Hauge R H, Smalley R E. Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. Physical Review Letters, 2004, 92(11): 117402
CrossRef Pubmed Google scholar
[9]
Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters, 2008, 92(4): 042116
CrossRef Google scholar
[10]
Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G, Ferrari A C. Nanotube polymer composites for ultrafast photonics. Advanced Materials, 2009, 21(38-39): 3874–3899
CrossRef Google scholar
[11]
Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083
CrossRef Google scholar
[12]
Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810
CrossRef Pubmed Google scholar
[13]
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67
CrossRef Pubmed Google scholar
[14]
Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photonics, 2013, 7(5): 394–399
CrossRef Google scholar
[15]
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 2011, 6(10): 630–634
CrossRef Pubmed Google scholar
[16]
Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 2011, 29(5): 205–212
CrossRef Pubmed Google scholar
[17]
Feng L, Liu Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine, 2011, 6(2): 317–324
CrossRef Pubmed Google scholar
[18]
Shen H, Zhang L, Liu M, Zhang Z. Biomedical applications of graphene. Theranostics, 2012, 2(3): 283–294
CrossRef Pubmed Google scholar
[19]
Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547
CrossRef Pubmed Google scholar
[20]
Wang F, Torrisi F, Jiang Z, Popa D, Hasan T, Sun Z, Cho W, Ferrari A C. Graphene passively Q-switched two-micron fiber lasers. In: Proceedings of Conference of Lasers and Electro-Optics. 2012, 1–2
[21]
Zhang M, Kelleher E J, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V, Taylor J R. Tm-doped fiber laser mode-locked by graphene-polymer composite. Optics Express, 2012, 20(22): 25077–25084
CrossRef Pubmed Google scholar
[22]
Ma J, Xie G Q, Lv P, Gao W L, Yuan P, Qian L J, Yu H H, Zhang H J, Wang J Y, Tang D Y. Graphene mode-locked femtosecond laser at 2 mm wavelength. Optics Letters, 2012, 37(11): 2085–2087
CrossRef Google scholar
[23]
Lagatsky A A, Sun Z, Kulmala T S, Sundaram R S, Milana S, Torrisi F, Antipov O L, Lee Y, Ahn J H, Brown C T, Sibbett W, Ferrari A C. 2 mm solid-state laser mode-locked by single-layer graphene. Applied Physics Letters, 2013, 102(1): 013113
CrossRef Google scholar
[24]
Cizmeciyan M N, Kim J W, Bae S, Hong B H, Rotermund F, Sennaroglu A. Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm. Optics Letters, 2013, 38(3): 341–343
CrossRef Pubmed Google scholar
[25]
Wang Q, Teng H, Zou Y, Zhang Z, Li D, Wang R, Gao C, Lin J, Guo L, Wei Z. Graphene on SiC as a Q-switcher for a 2 mm laser. Optics Letters, 2012, 37(3): 395–397
CrossRef Pubmed Google scholar
[26]
Tolstik N, Okhotnikov O, Sorokin E, Sorokina I T. Femtosecond Cr:ZnS laser at 2.35 µm mode-locked by carbon nanotubes. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 8959: 89591A
CrossRef Google scholar
[27]
Wei C, Zhu X, Wang F, Xu Y, Balakrishnan K, Song F, Norwood R A, Peyghambarian N. Graphene Q-switched 2.78 mm Er3+-doped fluoride fiber laser. Optics Letters, 2013, 38(17): 3233–3236
CrossRef Pubmed Google scholar
[28]
Zhu G, Zhu X, Wang F, Xu S, Li Y, Guo X, Balakrishnan K, Norwood R A, Peyghambarian N. Graphene mode-locked fiber laser at 2.8 mm. Photonics Technology Letters, 2016, 28 (1): 7–10
CrossRef Google scholar
[29]
Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nature Photonics, 2010, 4(5): 297–301
CrossRef Google scholar
[30]
Wang X, Cheng Z, Xu K, Tsang H K, Xu J B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 2013, 7(11): 888–891
CrossRef Google scholar
[31]
Cheng Z, Wang J, Xu K, Tsang H K, Shu C. Graphene on silicon-on-sapphire waveguide photodetectors. In: Proceedings of Laser and Electro-Optics(CLEO), 2015
[32]
Liu C H, Chang Y C, Norris T B, Zhong Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotechnology, 2014, 9(4): 273–278
CrossRef Pubmed Google scholar
[33]
Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 2013, 4: 1811
CrossRef Pubmed Google scholar
[34]
Yao Y, Shankar R, Rauter P, Song Y, Kong J, Loncar M, Capasso F. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Letters, 2014, 14(7): 3749–3754
CrossRef Pubmed Google scholar
[35]
Hsu A L, Herring P K, Gabor N M, Ha S, Shin Y C, Song Y, Chin M, Dubey M, Chandrakasan A P, Kong J, Jarillo-Herrero P, Palacios T. Graphene-based thermopile for thermal imaging applications. Nano Letters, 2015, 15(11): 7211–7216
CrossRef Pubmed Google scholar
[36]
Badioli M, Woessner A, Tielrooij K J, Nanot S, Navickaite G, Stauber T, García de Abajo F J, Koppens F H L. Phonon-mediated mid-infrared photoresponse of graphene. Nano Letters, 2014, 14(11): 6374–6381
CrossRef Pubmed Google scholar
[37]
Wang J, Cheng Z, Chen Z, Xu J B, Tsang H K, Shu C. Graphene photodetector integrated on silicon nitride waveguide. Journal of Applied Physics, 2015, 117(14): 144504
CrossRef Google scholar
[38]
Yan J, Kim M H, Elle J A, Sushkov A B, Jenkins G S, Milchberg H M, Fuhrer M S, Drew H D. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotechnology, 2012, 7(7): 472–478
CrossRef Pubmed Google scholar
[39]
Freitag M, Low T, Martin-Moreno L, Zhu W, Guinea F, Avouris P. Substrate-sensitive mid-infrared photoresponse in graphene. ACS Nano, 2014, 8(8): 8350–8356
CrossRef Pubmed Google scholar
[40]
Cheng Z, Tsang H K, Wang X, Xu K, Xu J B. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4400106
CrossRef Google scholar
[41]
Cheng Z, Wang J, Zhu B, Xu K, Zhou W, Tsang H K, Shu C. Graphene absorption enhancement using silicon slot waveguides. In: Proceedings of Photonics Conference (IPC) IEEE. 2015, 186–187
[42]
Wang J, Cheng Z, Shu C, Tsang H K. Optical absorption in graphene-on-silicon nitride microring resonator. IEEE Photonics Technology Letters, 2015, 27(16): 1765–1767
CrossRef Google scholar
[43]
Cheng Z, Chen X, Wong C Y, Xu K, Fung C K, Chen Y M, Tsang H K. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Optics Letters, 2012, 37(7): 1217–1219
CrossRef Pubmed Google scholar
[44]
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 2011, 6(10): 630–634
CrossRef Pubmed Google scholar
[45]
Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J, Nordlander P, Zhu X, Halas N J. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Letters, 2014, 14(1): 299–304
CrossRef Pubmed Google scholar
[46]
Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Letters, 2013, 13(6): 2541–2547
CrossRef Pubmed Google scholar
[47]
Abbas A N, Liu G, Liu B, Zhang L, Liu H, Ohlberg D, Wu W, Zhou C. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. ACS Nano, 2014, 8(2): 1538–1546
CrossRef Pubmed Google scholar
[48]
Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F, Avouris P. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano Letters, 2014, 14(3): 1573–1577
CrossRef Pubmed Google scholar
[49]
Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H. Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349(6244): 165–168
CrossRef Pubmed Google scholar
[50]
Loh K P, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2(12): 1015–1024
CrossRef Pubmed Google scholar
[51]
Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1(3): 203–212
CrossRef Pubmed Google scholar
[52]
Feng L, Yang X, Shi X, Tan X, Peng R, Wang J, Liu Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small, 2013, 9(11): 1989–1997
CrossRef Pubmed Google scholar
[53]
Liu K, Zhang J J, Cheng F F, Zheng T T, Wang C, Zhu J J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. Journal of Materials Chemistry, 2011, 21(32): 12034–12040
CrossRef Google scholar
[54]
Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5(9): 7000–7009
CrossRef Pubmed Google scholar
[55]
Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5(3): 199–212
CrossRef Google scholar
[56]
Yang K, Zhang S, Zhang G, Sun X, Lee S T, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 2010, 10(9): 3318–3323
CrossRef Pubmed Google scholar
[57]
Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, Zhou X, Guo S, Cui D. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1: 240–250
CrossRef Pubmed Google scholar
[58]
Li J L, Hou X L, Bao H C, Sun L, Tang B, Wang J F, Wang X G, Gu M. Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. Journal of Biomedical Materials Research. Part A, 2014, 102(7): 2181–2188
CrossRef Pubmed Google scholar
[59]
Robinson J T, Tabakman S M, Liang Y, Wang H, Casalongue H S, Vinh D, Dai H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society, 2011, 133(17): 6825–6831
CrossRef Pubmed Google scholar
[60]
Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34(20): 4786–4793
CrossRef Pubmed Google scholar
[61]
Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. Journal of Materials Chemistry, 2012, 22(27): 13773–13781
CrossRef Google scholar
[62]
Li M, Yang X, Ren J, Qu K, Qu X. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Advanced Materials, 2012, 24(13): 1722–1728
CrossRef Pubmed Google scholar
[63]
Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7): 2206–2214
CrossRef Pubmed Google scholar
[64]
Markovic Z M, Harhaji-Trajkovic L M, Todorovic-Markovic B M, Kepić D P, Arsikin K M, Jovanović S P, Pantovic A C, Dramićanin M D, Trajkovic V S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 2011, 32(4): 1121–1129
CrossRef Pubmed Google scholar
[65]
Li J L, Bao H C, Hou X L, Sun L, Wang X G, Gu M. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angewandte Chemie International Edition, 2012, 51(8): 1830–1834
CrossRef Pubmed Google scholar
[66]
Liu Q, Guo B, Rao Z, Zhang B, Gong J R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Letters, 2013, 13(6): 2436–2441
CrossRef Pubmed Google scholar
[67]
Qian J, Wang D, Cai F H, Xi W, Peng L, Zhu Z F, He H, Hu M L, He S. Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angewandte Chemie International Edition, 2012, 51(42): 10570–10575
CrossRef Pubmed Google scholar
[68]
Huang J, Zong C, Shen H, Liu M, Chen B, Ren B, Zhang Z. Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy. Small, 2012, 8(16): 2577–2584
CrossRef Pubmed Google scholar
[69]
Liu Z, Guo Z, Zhong H, Qin X, Wan M, Yang B. Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Physical Chemistry Chemical Physics, 2013, 15(8): 2961–2966
CrossRef Pubmed Google scholar
[70]
Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Advanced Materials, 2012, 24(14): 1868–1872
CrossRef Pubmed Google scholar
[71]
Zaugg C A, Sun Z, Wittwer V J, Popa D, Milana S, Kulmala T S, Sundaram R S, Mangold M, Sieber O D, Golling M, Lee Y, Ahn J H, Ferrari A C, Keller U. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. Optics Express, 2013, 21(25): 31548–31559
CrossRef Pubmed Google scholar
[72]
Baylam I, Cizmeciyan M N, Ozharar S, Polat E O, Kocabas C, Sennaroglu A. Femtosecond pulse generation with voltage-controlled graphene saturable absorber. Optics Letters, 2014, 39(17): 5180–5183
CrossRef Pubmed Google scholar
[73]
Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907
CrossRef Google scholar
[74]
Qin Z, Xie G, Zhang H, Zhao C, Yuan P, Wen S, Qian L. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 mm. Optics Express, 2015, 23(19): 24713–24718
CrossRef Pubmed Google scholar
[75]
Youngblood N, Chen C, Koester S J, Li M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015, 9(4): 247–252

Acknowledgements

This work was partly supported by MEXT Advanced Photon Science Alliance.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1116 KB)

Accesses

Citations

Detail

Sections
Recommended

/