Dual-periodic-microstructure-induced color tunable white organic light-emitting devices

Yangang BI, Jinhai JI, Yang CHEN, Yushan LIU, Xulin ZHANG, Yunfei LI, Ming XU, Yuefeng LIU, Xiaochi HAN, Qiang GAO, Hongbo SUN

PDF(1039 KB)
PDF(1039 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (2) : 283-289. DOI: 10.1007/s12200-016-0617-0
COMMUNICATION
COMMUNICATION

Dual-periodic-microstructure-induced color tunable white organic light-emitting devices

Author information +
History +

Abstract

In this paper, we demonstrate a color tunable white organic light-emitting devices (WOLEDs) based on the two complementary color strategies by introducing two-dimensional (2-D) dual periodic gratings. It is possible to tune the color in a range between cold-white and warm-white by simply operating the polarization of polarizer in front of the microstructured WOLEDs. Experimental and numerical results demonstrate that color tunability of the WOLEDs comes from the effect of the 2-D dual periodic gratings by exciting the surface plasmon-polariton (SPP) resonance associated with the cathode/organic interface. The electroluminescence (EL) performance of the WOLEDs have also been improved due to the effective light extraction by excitation and out-coupling of the SPP modes, and a 39.65% enhancement of current efficiency has been obtained compared to the conventional planar devices.

Graphical abstract

Keywords

dual periodic grating / surface plasmon-polariton (SPP) / color tunable / white organic light-emitting devices (WOLEDs)

Cite this article

Download citation ▾
Yangang BI, Jinhai JI, Yang CHEN, Yushan LIU, Xulin ZHANG, Yunfei LI, Ming XU, Yuefeng LIU, Xiaochi HAN, Qiang GAO, Hongbo SUN. Dual-periodic-microstructure-induced color tunable white organic light-emitting devices. Front. Optoelectron., 2016, 9(2): 283‒289 https://doi.org/10.1007/s12200-016-0617-0

References

[1]
D’Andrade B W, Forrest S R. White organic light-emitting devices for solid-state lighting. Advanced Materials, 2004, 16(18): 1585–1595
CrossRef Google scholar
[2]
Lee J, Slootsky M, Lee K, Zhang Y F, Forrest S R. An electrophosphorescent organic light emitting concentrator. Light: Science & Applications, 2014, 3: e181
[3]
Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K. White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009, 459(7244): 234–238
CrossRef Pubmed Google scholar
[4]
Xiang C Y, Koo W, So F, Sasabe H, Kido J. A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices. Light: Science & Applications, 2013, 2: e74
[5]
Sun Y, Giebink N C, Kanno H, Ma B, Thompson M E, Forrest S R. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature, 2006, 440(7086): 908–912
CrossRef Pubmed Google scholar
[6]
Yu J N, Lin H, Wang F F, Lin Y, Zhang J H, Zhang H, Wang Z X, Wei B. Sunlight-like, color-temperature tunable white organic light-emitting diode with high color rendering index for solid-state lighting application. Journal of Materials Chemistry, 2012, 22(41): 22097–22101
CrossRef Google scholar
[7]
Zhao Y, Chen R, Gao Y, Leck K S, Yang X, Liu S, Abiyasa A P, Divayana Y, Mutlugun E, Tan S T, Sun H, Demir H V, Sun X W. AC-driven, color-and brightness-tunable organic light-emitting diodes constructed from an electron only device. Organic Electronics, 2013, 14(12): 3195–3200
CrossRef Google scholar
[8]
Huang M H, Lin W C, Fan C C, Wang Y S, Lin H W, Liao J L, Lin C H, Chi Y. Tunable chromaticity stability in solution-processed organic light emitting devices. Organic Electronics, 2015, 20: 36–42
CrossRef Google scholar
[9]
Cheng G, Chan K T, To W P, Che C M. Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent gold(III) complexes having long-lived emissive excited states. Advanced Materials, 2014, 26(16): 2540–2546
CrossRef Pubmed Google scholar
[10]
Hu F, Zhang G, Zhan C, Zhang W, Yan Y, Zhao Y, Fu H, Zhang D. Highly solid-state emissive pyridinium-substituted tetraphenylethylene salts: emission color-tuning with counter anions and application for optical waveguides. Small, 2015, 11(11): 1335–1344
CrossRef Pubmed Google scholar
[11]
Thomas K R J, Kapoor N, Bolisetty M N K P, Jou J H, Chen Y L, Jou Y C. Pyrene-fluorene hybrids containing acetylene linkage as color-tunable emitting materials for organic light-emitting diodes. Journal of Organic Chemistry, 2012, 77(8): 3921–3932
CrossRef Pubmed Google scholar
[12]
Keawin T, Sooksai C, Prachumrak N, Kaewpuang T, Muenmart D, Namuangruk S, Jungsuttiwong S, Sudyoadsuk T, Promarak V. Oligoarylenes end-capped with carbazol-N-yl-carbazole as color tunable light-emitting and hole-transporting materials for solution-processed OLEDs. RSC Advances, 2015, 5(21): 16422–16432
CrossRef Google scholar
[13]
Bi Y G, Feng J, Liu Y S, Li Y F, Chen Y, Zhang X L, Han X C, Sun H B. Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation. Scientific Reports, 2014, 4: 7108
CrossRef Pubmed Google scholar
[14]
Bi Y G, Feng J, Chen Y, Liu Y S, Zhang X L, Li Y F, Xu M, Liu Y F, Han X C, Sun H B. Dual-periodic-corrugation-induced broadband light absorption enhancement in organic solar cells. Organic Electronics, 2015, 27: 167–172
[15]
Park B, Yun S H, Cho C Y, Kim Y C, Shin J C, Jeon H G, Huh Y H, Hwang I, Baik K Y, Lee Y I. SupUhm H, Cho G S, Choi E H. Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors. Light: Science & Applications, 2014, 3: e222
[16]
Koller D M, Hohenau A, Ditlbacher H, Galler N, Reil F, Aussenegg F R, Leitner A, List E J W, Krenn J R. Organic plasmon-emitting diode. Nature Photonics, 2008, 2(11): 684–687
CrossRef Google scholar
[17]
Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824–830
CrossRef Pubmed Google scholar
[18]
Wedge S, Hooper I R, Sage I, Barnes W L. Light emission through a corrugated metal film: the role of cross-coupled surface plasmon polaritons. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(24): 245418
CrossRef Google scholar
[19]
Jin Y, Feng J, Zhang X L, Bi Y G, Bai Y, Chen L, Lan T, Liu Y F, Chen Q D, Sun H B. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode. Advanced Materials, 2012, 24(9): 1187–1191
CrossRef Pubmed Google scholar

Acknowledgments

The authors gratefully acknowledge support from the National Basic Research Program of China (973 Program) (No. 2013CBA01700), the National Natural Science Foundation of China (NSFC) (Grant Nos. 61322402, 91233123 and 61177024).

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1039 KB)

Accesses

Citations

Detail

Sections
Recommended

/