Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide

Ya’nan WANG, Yi LUO, Changzheng SUN, Bing XIONG, Jian WANG, Zhibiao HAO, Yanjun HAN, Lai WANG, Hongtao LI

PDF(2609 KB)
PDF(2609 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (2) : 323-329. DOI: 10.1007/s12200-016-0616-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide

Author information +
History +

Abstract

Laser annealing of silicon dioxide (SiO2) film formed by inductively coupled plasma enhanced chemical vapor deposition (ICPECVD) is studied for the fabrication of low loss silicon based waveguide. The influence of laser annealing on ICPECVD-deposited SiO2 film is investigated. The surface roughness, refractive index, and etch rate of annealed samples are compared with those of SiO2 film obtained by thermal oxidation. It is demonstrated that the performance of ICPECVD-deposited SiO2 film can be significantly improved by laser annealing. Al2O3/SiO2 waveguide has been fabricated on silicon substrate with the SiO2 lower cladding formed by ICPECVD and laser annealing process, and its propagation loss is found to be comparable with that of the waveguide with thermally oxidized lower cladding.

Keywords

laser annealing / waveguide loss / silicon dioxide / inductively coupled plasma enhanced chemical vapor deposition (ICPECVD)

Cite this article

Download citation ▾
Ya’nan WANG, Yi LUO, Changzheng SUN, Bing XIONG, Jian WANG, Zhibiao HAO, Yanjun HAN, Lai WANG, Hongtao LI. Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide. Front. Optoelectron., 2016, 9(2): 323‒329 https://doi.org/10.1007/s12200-016-0616-1

References

[1]
Bhatt V, Chandra S. Silicon dioxide films by RF sputtering for microelectronic and MEMS applications. Journal of Micromechanics and Microengineering, 2007, 17(5): 1066–1077
CrossRef Google scholar
[2]
Zheleva T, Lelis A, Duscher G, Liu F, Levin I, Das M. Transition layers at the SiO2/SiC interface. Applied Physics Letters, 2008, 93(2): 022108-022108–3
CrossRef Google scholar
[3]
Kawachi M. Silica waveguides on silicon and their application to integrated-optic components. Optical and Quantum Electronics, 1990, 22(5): 391–416
CrossRef Google scholar
[4]
Bauters J F, Heck M J R, John D, Dai D, Tien M C, Barton J S, Leinse A, Heideman R G, Blumenthal D J, Bowers J E. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Optics Express, 2011, 19(4): 3163–3174
CrossRef Pubmed Google scholar
[5]
Ghandhi S. VLSI Fabrication Principles Silicon and Gallium Arsenide. New York: J. Wiley and Sons, 1994, 452–482
[6]
Gherardi N, Martin S, Massines F. A new approach to SiO2 deposit using a N2-SiH4-N2O glow dielectric barrier-controlled discharge at atmospheric pressure. Journal of Physics D: Applied Physics, 2000, 33(19): L104–L108
CrossRef Google scholar
[7]
Santamaria J, Iborra E, Quesada F S, Diaz G G, Vidal M R. Sputtering of SiO2 in O2-Ar atmospheres. Thin Solid Films, 1986, 139(2): 201–208
CrossRef Google scholar
[8]
Duran A, Serna C, Fornes V, Navarro J M F. Structural considerations about SiO2 glasses prepared by sol-gel. Journal of Non-Crystalline Solids, 1986, 82(1-3): 69–77
CrossRef Google scholar
[9]
Zúñiga-Segundo A, Ruiz F, Vázquez-López C, González-Hernández J, Torres-Delgado G, Tsu D V. Characterization of SiO2 layers on Si wafers using atomic force microscopy. Journal of Vacuum Science & Technology, 1994, 12(4): 2572–2576
CrossRef Google scholar
[10]
Chen X Y, Lu Y F, Tang L J, Wu Y H, Cho B J, Xu X J, Dong J R, Song W D. Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2005, 97(1): 014913
CrossRef Google scholar
[11]
Ay F, Aydinli A. Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Optical Materials, 2004, 26(1): 33–46
CrossRef Google scholar
[12]
Boogaard A, Kovalgin A Y, Brunets I, Aarnink A A I, Holleman J, Wolters R A M, Schmitz J. Characterization of SiO2 films deposited at low temperature by means of remote ICPECVD. Surface and Coatings Technology, 2007, 201(22-23): 8976–8980
CrossRef Google scholar
[13]
Bauters J F, Heck M J R, John D D, Barton J S, Bruinink C M, Leinse A, Heideman R G, Blumenthal D J, Bowers J E. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Optics Express, 2011, 19(24): 24090–24101
CrossRef Pubmed Google scholar
[14]
Armani D K, Kippenberg T J, Spillane S M, Vahala K J. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421(6926): 925–928
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2012CB315605 and 2014CB340002), the National Natural Science Foundation of China (Grant Nos. 61210014, 61321004, 61307024, 61574082 and 51561165012), the High Technology Research and Development Program of China (No. 2015AA017101), the Independent Research Program of Tsinghua University (No. 20131089364) and the Open Fund of State Key Laboratory on Integrated Optoelectronics (Nos. IOSKL2012KF08 and IOSKL2014KF09).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2609 KB)

Accesses

Citations

Detail

Sections
Recommended

/