Plasmonic light trapping for wavelength-scale silicon solar absorbers

Yinan ZHANG, Min GU

PDF(682 KB)
PDF(682 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (2) : 277-282. DOI: 10.1007/s12200-016-0614-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Plasmonic light trapping for wavelength-scale silicon solar absorbers

Author information +
History +

Abstract

Light trapping is of critical importance for constructing high efficiency solar cells. In this paper, we first reviewed the progress we made on the plasmonic light trapping on Si wafer solar cells, including Al nanoparticle (NP)/SiNx hybrid plasmonic antireflection and the Ag NP light trapping for the long-wavelength light in ultrathin Si wafer solar cells. Then we numerically explored the maximum light absorption enhancement by a square array of Ag NPs located at the rear side of ultrathin solar cells with wavelength-scale Si thickness. Huge absorption enhancement is achieved at particular long wavelengths due to the excitation of the plasmon-coupled guided resonances. The photocurrent generated in 100 nm thick Si layers is 6.8 mA/cm2, representing an enhancement up to 92% when compared with that (3.55 mA/cm2) of the solar cells without the Ag NPs. This study provides the insights of plasmonic light trapping for ultrathin solar cells with wavelength-scale Si thickness.

Graphical abstract

Keywords

solar cells / light trapping / plasmonic / ultrathin Si / wavelength-scale

Cite this article

Download citation ▾
Yinan ZHANG, Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers. Front. Optoelectron., 2016, 9(2): 277‒282 https://doi.org/10.1007/s12200-016-0614-3

References

[1]
Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213
CrossRef Pubmed Google scholar
[2]
Gu M, Ouyang Z, Jia B, Stokes N, Chen X, Fahim N, Li X, Ventura M, Shi Z. Nanoplasmonics: a frontier of photovoltaic solar cells. Nanophotonics, 2012, 1(3-4): 235–248
CrossRef Google scholar
[3]
Zhang Y, Stokes N, Jia B, Fan S, Gu M. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Scientific Reports, 2014, 4: 4939
CrossRef Pubmed Google scholar
[4]
Zhang Y, Ouyang Z, Stokes N, Jia B, Shi Z, Gu M. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Applied Physics Letters, 2012, 100(15): 151101
CrossRef Google scholar
[5]
Zhang Y, Chen X, Ouyang Z, Lu H, Jia B, Shi Z, Gu M. Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Optical Materials Express, 2013, 3(4): 489–495
CrossRef Google scholar
[6]
Zhang Y, Jia B, Ouyang Z, Gu M. Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells. Journal of Applied Physics, 2014, 116(12): 124303
CrossRef Google scholar
[7]
Derkacs D, Lim S, Matheu P, Mar W, Yu E. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Applied Physics Letters, 2006, 89(9): 093103
CrossRef Google scholar
[8]
Eminian C, Haug F, Cubero O, Niquille X, Ballif C. Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles. Progress in Photovoltaics: Research and Applications, 2011, 19(3): 260–265
CrossRef Google scholar
[9]
Chen X, Jia B, Saha J K, Cai B, Stokes N, Qiao Q, Wang Y, Shi Z, Gu M. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Letters, 2012, 12(5): 2187–2192
CrossRef Pubmed Google scholar
[10]
Lare M, Lenzmann F, Verschuuren M, Polman A. Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells. Applied Physics Letters, 2012, 101(22): 221110
CrossRef Google scholar
[11]
Nakayama K, Tanabe K, Atwater H. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008, 93(12): 121904
CrossRef Google scholar
[12]
Beck F, Mokkapati S, Catchpole K. Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles. Progress in Photovoltaics: Research and Applications, 2010, 18(7): 500–504
CrossRef Google scholar
[13]
Yang Y, Pillai S, Mehrvarz H, Kampwerth H, Ho-Baillie A, Green M. Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Solar Energy Materials and Solar Cells, 2012, 101: 217–226
CrossRef Google scholar
[14]
Temple T, Mahanama G, Reehal H, Bagnall D. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Solar Energy Materials and Solar Cells, 2009, 93(11): 1978–1985
CrossRef Google scholar
[15]
Xu R, Wang X, Song L, Liu W, Ji A, Yang F, Li J. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Optics Express, 2012, 20(5): 5061–5068
CrossRef Pubmed Google scholar
[16]
Chen X, Jia B, Zhang Y, Gu M. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light, Science & Applications, 2013, 2(8): e92
CrossRef Google scholar
[17]
Fahim N, Ouyang Z, Jia B, Zhang Y, Shi Z, Gu M. Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings. Applied Physics Letters, 2012, 101(26): 261102
CrossRef Google scholar
[18]
Fahim N, Ouyang Z, Zhang Y, Jia B, Shi Z, Gu M. Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process. Optical Materials Express, 2012, 2(2): 190–204
CrossRef Google scholar
[19]
Hägglund C, Zäch M, Petersson G, Kasemo B. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Applied Physics Letters, 2008, 92(5): 053110
CrossRef Google scholar
[20]
Grandidier J, Callahan D M, Munday J N, Atwater H A. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Advanced Materials, 2011, 23(10): 1272–1276
CrossRef Pubmed Google scholar
[21]
Kang G, Park H, Shin D, Baek S, Choi M, Yu D H, Kim K, Padilla W J. Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures. Advanced Materials, 2013, 25(18): 2617–2623
CrossRef Pubmed Google scholar
[22]
Brongersma M L, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nature Materials, 2014, 13(5): 451–460
CrossRef Pubmed Google scholar
[23]
Spinelli P, Polman A. Light trapping in thin crystalline Si solar cells using surface Mie scatters. IEEE Journal of Photovoltaics, 2014, 4(2): 554–559
CrossRef Google scholar
[24]
Kim I, Jeong D S, Lee W S, Kim W M, Lee T S, Lee D K, Song J H, Kim J K, Lee K S. Silicon nanodisk array design for effective light trapping in ultrathin c-Si. Optics Express, 2014, 22(Suppl 6): A1431–A1439
CrossRef Pubmed Google scholar
[25]
Wang K X, Yu Z, Liu V, Cui Y, Fan S. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Letters, 2012, 12(3): 1616–1619
CrossRef Pubmed Google scholar
[26]
Jeong S, McGehee M D, Cui Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nature Communications, 2013, 4: 2950
CrossRef Pubmed Google scholar
[27]
Branham M S, Hsu W C, Yerci S, Loomis J, Boriskina S V, Hoard B R, Han S E, Chen G. 15.7% efficient 10-mm-thick crystalline silicon solar cells using periodic nanostructures. Advanced Materials, 2015, 27(13): 2182–2188
CrossRef Pubmed Google scholar
[28]
Kwon J Y, Lee D H, Chitambar M, Maldonado S, Tuteja A, Boukai A. High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates. Nano Letters, 2012, 12(10): 5143–5147
CrossRef Pubmed Google scholar
[29]
Karakasoglu I, Wang K, Fan S. Optical-electronic analysis of the intrinsic behaviors of nanostructured ultrathin crystalline silicon solar cells. ACS Photonics, 2015, 2(7): 883–889
CrossRef Google scholar
[30]
Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17491–17496
CrossRef Pubmed Google scholar
[31]
FDTD solutions, Lumerical, Toronto, Canada
[32]
Palik E. Handbook of Optical Constants of Solids. London: Elsevier, 1988
[33]
Green M. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficient. Solar Energy Materials and Solar Cells, 2008, 92(11): 1305–1310
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(682 KB)

Accesses

Citations

Detail

Sections
Recommended

/