Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission

Daojun XUE, Shaohua YU, Qi YANG, Nan CHI, Lan RAO, Xiangjun XIN, Wei LI, Songnian FU, Sheng CUI, Demin LIU, Zhuo LI, Aijun WEN, Chongxiu YU, Xinmei WANG

PDF(3262 KB)
PDF(3262 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (2) : 123-137. DOI: 10.1007/s12200-016-0612-5
REVIEW ARTICLE
REVIEW ARTICLE

Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission

Author information +
History +

Abstract

Ultra-high-speed, ultra-large-capacity and ultra-long-haul (3U) are the forever pursuit of optical communication. As a new mode of optical communication, 3U transmission can greatly promote next generation optical internet and broadband mobile communication network development and technological progress, therefore it has become the focus of international high-tech intellectual property competition ground. This paper introduces the scientific problems, key technologies and important achievements in 3U transmission research.

Keywords

ultra-high-speed / ultra-large-capacity / ultra-long-haul / optical transmission / high spectral efficiency / parametric amplification / dispersion management

Cite this article

Download citation ▾
Daojun XUE, Shaohua YU, Qi YANG, Nan CHI, Lan RAO, Xiangjun XIN, Wei LI, Songnian FU, Sheng CUI, Demin LIU, Zhuo LI, Aijun WEN, Chongxiu YU, Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission. Front. Optoelectron., 2016, 9(2): 123‒137 https://doi.org/10.1007/s12200-016-0612-5

References

[1]
Zhang H, Cai J X, Batshon H G, Mazurczyk M V, Sinkin O, Foursa D G, Pilipetskii A, Mohs G, Bergano N S.200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency. In: Processing of OFC 2013, Paper PDP5A.6
[2]
Yu J, Zhang J, Dong Z, Jia Z, Chien H C, Cai Y, Xiao X, Li X. Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs. Optics Express, 2013, 21(13): 15686–15691
CrossRef Pubmed Google scholar
[3]
Zhang J, Yu J, Chi N. Generation and transmission of 512-Gb/s quad-carrier digital super-Nyquist spectral shaped signal. Optics Express, 2013, 21(25): 31212–31217
CrossRef Pubmed Google scholar
[5]
Porto da Silva E, Carvalho L, Franciscangelis C, Diniz J, Oliveira J, Bordonalli A. Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid. In: Processing of OFC2013, paper JTh2A.39
[6]
Zhang J, Chien H, Dong Z, Xiao J.Transmission of 480-Gb/s dual-carrier PM-8QAM over 2550 km SMF-28 using adaptive pre-equalization. In: Processing of OFC 2014, paper Th4F.6
[7]
Zhou X, Nelson L, Magill P, Issac R, Zhu B, Peckham D, Borel P, Carlson K.4000 km transmission of 50 GHz spaced, 10×494.85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery. In: Processing of OFC 2012, paper PDP5C.6
[8]
Cai J X, Davidson C R, Lucero A J, Zhang H, Foursa D G, Sinkin O V, Patterson W W, Pilipetskii A N, Mohs G, Bergano N S. 20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing. Journal of Lightwave Technology, 2012, 30(4): 651–657
CrossRef Google scholar
[4]
Zhang J, Yu J, Jia Z, Chien H C. 400 G transmission of super-Nyquist-filtered signal based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid. Journal of Lightwave Technology, 2014, 32(19): 3239–3246
CrossRef Google scholar
[11]
Kuo B P P, Myslivets E, Alic N, Radic S. Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer. Journal of Lightwave Technology, 2011, 29(23): 3515–3522
CrossRef Google scholar
[12]
Slavík R, Parmigiani F, Kakande J, Lundström C, Sjödin M, Andrekson P A, Weerasuriya R, Sygletos S, Ellis A D, Grüner-Nielsen L, Jakobsen D, Herstrøm S, Phelan R, O’Gorman J, Bogris A, Syvridis D, Dasgupta S, Petropoulos P, Richardson D J. All-optical phase and amplitude regeneration for next-generation telecommunications system. Nature Photonics, 2010, 4(10): 690–695
CrossRef Google scholar
[13]
Torounidis T, Andrekson P A, Olsson B E. Fiber-optical parametric amplifier with 70 dB gain. IEEE Photonics Technology Letters, 2006, 18(10): 1194–1196
CrossRef Google scholar
[14]
Tong Z, Lundstrom C, Andrekson P A, McKinstrie C J, Karlsson M, Blessing D J, Tipsuwannaku E, Puttnam B J, Todaand H,Gruner-Nielsen L. Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nature Photonics, 2011, 79(10): 1038
[9]
Zhang J, Yu J, Chi N, Dong Z, Yu J, Li X, Tao L, Shao Y. Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing. Journal of Lightwave Technology, 2013, 31(7): 1073–1078
CrossRef Google scholar
[10]
Zhang J, Huang B, Li X. Improved quadrature duobinary system performance using multi-modulus equalization. Photonic Technology Letters, 2013, 25(16): 1630–1633
CrossRef Google scholar
[28]
Rao L, Yu C X, Shen X W, Sang X Z, Yuan J H, Zeng X F, Xin X J. Investigation on gain characteristics in non-degenerate cascaded phase sensitive parametric amplifiers. Optoelectronics Letters, 2012, 8(3): 172–175
CrossRef Google scholar
[29]
Yuan J H, Sang X Z, Wu Q, Yu C X, Wang K R, Yan B B, Shen X W, Han Y, Zhou G Y, Semenova Y, Farrell G, Hou L T. Efficient red-shifted dispersive wave in a photonic crystal fiber for widely tunable mid-infrared wavelength generation. Laser Physics Letters, 2013, 10(4): 045405
CrossRef Google scholar
[30]
Yuan J H, Sang X Z, Wu Q, Yu C X, Zhou G Y, Shen X W, Wang K R, Yan B B, Teng Y L, Xia C M, Han Y, Li S G, Farrell G, Hou L T. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding. Laser Physics Letters, 2013, 10(8): 085402
CrossRef Google scholar
[31]
Yuan J H, Sang X Z, Yu C X, Han Y, Zhou G Y, Li S G, Hou L T. Highly efficient anti-Stokes signal conversion by pumping in the normal and anomalous dispersion regions in the fundamental mode of photonic crystal fiber. Journal of Lightwave Technology, 2011, 29(19): 2920–2926
CrossRef Google scholar
[32]
Yuan J, Zhou G, Liu H, Xia C, Sang X, Wu Q, Yu C, Wang K, Yan B, Han Y, Farrell G, Hou L. Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber. Progress In Electromagnetics Research-PIER, 2013, 141: 659–670
CrossRef Google scholar
[15]
Zong L, Luo F, Cui S, Cao X. Rapid and accurate chromatic dispersion measurement of fiber using asymmetric Sagnac interferometer. Optics Letters, 2011, 36(5): 660–662
CrossRef Pubmed Google scholar
[16]
Zong L, Luo F, Wang Y, Cao X. Dispersion compensation module for 100 Gbit/s optical system and beyond. Optical Fiber Technology, 2011, 17(3): 227–232
CrossRef Google scholar
[17]
Cui S, Sun S, Li L, Ke C, Wan Z, Liu D. All-optical highly sensitive chromatic dispersion monitoring method utilizing phase-matched four-wave mixing. IEEE Photonics Technology Letters, 2011, 23(22): 1724–1726
CrossRef Google scholar
[18]
Cheng H, Li W, Fan Y, Zhang Z, Yu S, Yang Z. A novel fiber nonlinearity suppression method in DWDM optical fiber transmission systems with an all-optical pre-distortion module. Optics Communications, 2013, 290(1): 152–157
CrossRef Google scholar
[19]
Yang Q, Xiao X, Li C, Luo M, He Z, Li C, Hu R, Zhang X, Yu S. 168×103 Gb/s 25-GHz-spaced C-band transmission over 2240 km SSMF with improved nonlinearity using DFT-S OFDM-8PSK modulation. In: Processing of Asia Communications and Photonics Conference 2012, PDP paper AF4C.3
[20]
Yang Q, He Z, Liu W, Yang Z, Yu S, Shieh W, Djordjevic I B. 1-Tb/s large girth LDPC-coded coherent optical OFDM transmission over 1040-km standard single-mode fiber. In: Processing of OFC 2011, paper JThA035
[21]
Li C, Luo M, Xiao X, Li J, He Z, YangQ, YangZ,YuS.63-Tb/s (368×183.3-Gb/s) C- and L-band all-Raman transmission over 160-km SSMF using OFDM-16QAM modulation. Chinese Optics Letters, 2014, 12(4): 040601–040604
[22]
Luo M, Li C, Yang Q, He Z, Xu J, Zhang Z, Yu S. 100.3-Tb/s(375×267.27-Gb/s) C- and L-band transmission over 80-km SSMF using DFT-S OFDM 128-QAM. In: Processing of Asia Communications and Photonics Conference 2014, PDP paper AF4B.1
[23]
Luo M, Mo Q, Li X, Hu R, Qiu Y, Li C, Liu Z, Liu W, Yu H, Du W, Xu J, He Z, Yang Q, Yu S. Transmission of 200 Tb/s (375×3×178.125 Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF. Frontiers of Optoelectronics, 2015, 8(4): 394–401
CrossRef Google scholar
[24]
Li C, Djordjevic I B, Luo M, He Z, Liu W, Yang Q, Xiao X, Xue D, Yu S, Shieh W. Ultra long-haul transmission of a 1-Tb/s LDPC-coded DFT-S OFDM-8PSK superchannel over 12160 km. In: Processing of Asia Communications and Photonics Conference 2013, PDP Paper AF2C.2
[25]
Luo M, Zhang Z, Li C, Xu J, Zhang X, Li J, He Z, Hu R, Yang Q, Yu S. Real-time single laser based 3.2 Tb/s (32×100-Gb/s) PM-QPSK transmission using coherent detection over 2080-km SSMF. In: Processing of Asia Communications and Photonics Conference 2014, paper ATh4E.2
[26]
Li C, Zhang X, Li H, Li C, Luo M, Li Z, Xu J, Yang Q, Yu S. Experimental demonstration of 429.96-Gb/s OFDM /OQAM-64QAM over 400-km SSMF transmission within a 50-GHz Grid. IEEE Photonics Journal, 2014, 6(4): 1–8
[27]
Zeng T, Pan Y, Luo M, Wang Y, Hu R, Yang Q, Yu S. The manipulated rotating BPSK technique compatible with conventional CMA algorithm. In: Processing of OFC 2015, paper TH2A.1

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2010CB328300).
During the study period (2010-2014), teams that have made contributions to the project are (in no particular order): Yang Qi’s team from State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications (undertaker of topic 1 “160×100 Gbit/s ultra-long-haul optical transmission theory and experimental verification”), Chi Nan’s team from Fudan University (undertaker of topic 3 “high spectral efficiency optical coding and modulation”), Yu Chongxiu and Xin Xiangjun’s team from Beijing University of Posts and Telecommunications (undertaker of topic 4 “high gain high flatness ultra-low noise parametric amplification”), Liu Deming and Cao Xiangdong’s team, Li Wei’s team, Fu Songnian’s team and Cui Sheng’s team from Huazhong University of Science and Technology (undertaker of topic 2 “multi-wavelength self-related light source and correlation reception” and topic 5 “nonlinear suppression and high precision dispersion management”), Wang Xinmei and Wen Aijun’s team from Xidian University (participant of topic 3 “high spectral efficiency optical coding and modulation”). Their efforts are all greatly appreciated.ƒDuring the five years of this project, Prof. Zhou Bingkun (Academician of Chinese Academy of Sciences) has given us a lot of encouragement, support and help. The team members of this project would like to express their heartfelt thanks and wish Prof. Zhou good health and happy life.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3262 KB)

Accesses

Citations

Detail

Sections
Recommended

/