Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission
Daojun XUE, Shaohua YU, Qi YANG, Nan CHI, Lan RAO, Xiangjun XIN, Wei LI, Songnian FU, Sheng CUI, Demin LIU, Zhuo LI, Aijun WEN, Chongxiu YU, Xinmei WANG
Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission
Ultra-high-speed, ultra-large-capacity and ultra-long-haul (3U) are the forever pursuit of optical communication. As a new mode of optical communication, 3U transmission can greatly promote next generation optical internet and broadband mobile communication network development and technological progress, therefore it has become the focus of international high-tech intellectual property competition ground. This paper introduces the scientific problems, key technologies and important achievements in 3U transmission research.
ultra-high-speed / ultra-large-capacity / ultra-long-haul / optical transmission / high spectral efficiency / parametric amplification / dispersion management
[1] |
Zhang H, Cai J X, Batshon H G, Mazurczyk M V, Sinkin O, Foursa D G, Pilipetskii A, Mohs G, Bergano N S.200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency. In: Processing of OFC 2013, Paper PDP5A.6
|
[2] |
Yu J, Zhang J, Dong Z, Jia Z, Chien H C, Cai Y, Xiao X, Li X. Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs. Optics Express, 2013, 21(13): 15686–15691
CrossRef
Pubmed
Google scholar
|
[3] |
Zhang J, Yu J, Chi N. Generation and transmission of 512-Gb/s quad-carrier digital super-Nyquist spectral shaped signal. Optics Express, 2013, 21(25): 31212–31217
CrossRef
Pubmed
Google scholar
|
[5] |
Porto da Silva E, Carvalho L, Franciscangelis C, Diniz J, Oliveira J, Bordonalli A. Spectrally-efficient 448-Gb/s dual-carrier PDM-16QAM channel in a 75-GHz grid. In: Processing of OFC2013, paper JTh2A.39
|
[6] |
Zhang J, Chien H, Dong Z, Xiao J.Transmission of 480-Gb/s dual-carrier PM-8QAM over 2550 km SMF-28 using adaptive pre-equalization. In: Processing of OFC 2014, paper Th4F.6
|
[7] |
Zhou X, Nelson L, Magill P, Issac R, Zhu B, Peckham D, Borel P, Carlson K.4000 km transmission of 50 GHz spaced, 10×494.85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery. In: Processing of OFC 2012, paper PDP5C.6
|
[8] |
Cai J X, Davidson C R, Lucero A J, Zhang H, Foursa D G, Sinkin O V, Patterson W W, Pilipetskii A N, Mohs G, Bergano N S. 20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing. Journal of Lightwave Technology, 2012, 30(4): 651–657
CrossRef
Google scholar
|
[4] |
Zhang J, Yu J, Jia Z, Chien H C. 400 G transmission of super-Nyquist-filtered signal based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid. Journal of Lightwave Technology, 2014, 32(19): 3239–3246
CrossRef
Google scholar
|
[11] |
Kuo B P P, Myslivets E, Alic N, Radic S. Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer. Journal of Lightwave Technology, 2011, 29(23): 3515–3522
CrossRef
Google scholar
|
[12] |
Slavík R, Parmigiani F, Kakande J, Lundström C, Sjödin M, Andrekson P A, Weerasuriya R, Sygletos S, Ellis A D, Grüner-Nielsen L, Jakobsen D, Herstrøm S, Phelan R, O’Gorman J, Bogris A, Syvridis D, Dasgupta S, Petropoulos P, Richardson D J. All-optical phase and amplitude regeneration for next-generation telecommunications system. Nature Photonics, 2010, 4(10): 690–695
CrossRef
Google scholar
|
[13] |
Torounidis T, Andrekson P A, Olsson B E. Fiber-optical parametric amplifier with 70 dB gain. IEEE Photonics Technology Letters, 2006, 18(10): 1194–1196
CrossRef
Google scholar
|
[14] |
Tong Z, Lundstrom C, Andrekson P A, McKinstrie C J, Karlsson M, Blessing D J, Tipsuwannaku E, Puttnam B J, Todaand H,Gruner-Nielsen L. Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nature Photonics, 2011, 79(10): 1038
|
[9] |
Zhang J, Yu J, Chi N, Dong Z, Yu J, Li X, Tao L, Shao Y. Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing. Journal of Lightwave Technology, 2013, 31(7): 1073–1078
CrossRef
Google scholar
|
[10] |
Zhang J, Huang B, Li X. Improved quadrature duobinary system performance using multi-modulus equalization. Photonic Technology Letters, 2013, 25(16): 1630–1633
CrossRef
Google scholar
|
[28] |
Rao L, Yu C X, Shen X W, Sang X Z, Yuan J H, Zeng X F, Xin X J. Investigation on gain characteristics in non-degenerate cascaded phase sensitive parametric amplifiers. Optoelectronics Letters, 2012, 8(3): 172–175
CrossRef
Google scholar
|
[29] |
Yuan J H, Sang X Z, Wu Q, Yu C X, Wang K R, Yan B B, Shen X W, Han Y, Zhou G Y, Semenova Y, Farrell G, Hou L T. Efficient red-shifted dispersive wave in a photonic crystal fiber for widely tunable mid-infrared wavelength generation. Laser Physics Letters, 2013, 10(4): 045405
CrossRef
Google scholar
|
[30] |
Yuan J H, Sang X Z, Wu Q, Yu C X, Zhou G Y, Shen X W, Wang K R, Yan B B, Teng Y L, Xia C M, Han Y, Li S G, Farrell G, Hou L T. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding. Laser Physics Letters, 2013, 10(8): 085402
CrossRef
Google scholar
|
[31] |
Yuan J H, Sang X Z, Yu C X, Han Y, Zhou G Y, Li S G, Hou L T. Highly efficient anti-Stokes signal conversion by pumping in the normal and anomalous dispersion regions in the fundamental mode of photonic crystal fiber. Journal of Lightwave Technology, 2011, 29(19): 2920–2926
CrossRef
Google scholar
|
[32] |
Yuan J, Zhou G, Liu H, Xia C, Sang X, Wu Q, Yu C, Wang K, Yan B, Han Y, Farrell G, Hou L. Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber. Progress In Electromagnetics Research-PIER, 2013, 141: 659–670
CrossRef
Google scholar
|
[15] |
Zong L, Luo F, Cui S, Cao X. Rapid and accurate chromatic dispersion measurement of fiber using asymmetric Sagnac interferometer. Optics Letters, 2011, 36(5): 660–662
CrossRef
Pubmed
Google scholar
|
[16] |
Zong L, Luo F, Wang Y, Cao X. Dispersion compensation module for 100 Gbit/s optical system and beyond. Optical Fiber Technology, 2011, 17(3): 227–232
CrossRef
Google scholar
|
[17] |
Cui S, Sun S, Li L, Ke C, Wan Z, Liu D. All-optical highly sensitive chromatic dispersion monitoring method utilizing phase-matched four-wave mixing. IEEE Photonics Technology Letters, 2011, 23(22): 1724–1726
CrossRef
Google scholar
|
[18] |
Cheng H, Li W, Fan Y, Zhang Z, Yu S, Yang Z. A novel fiber nonlinearity suppression method in DWDM optical fiber transmission systems with an all-optical pre-distortion module. Optics Communications, 2013, 290(1): 152–157
CrossRef
Google scholar
|
[19] |
Yang Q, Xiao X, Li C, Luo M, He Z, Li C, Hu R, Zhang X, Yu S. 168×103 Gb/s 25-GHz-spaced C-band transmission over 2240 km SSMF with improved nonlinearity using DFT-S OFDM-8PSK modulation. In: Processing of Asia Communications and Photonics Conference 2012, PDP paper AF4C.3
|
[20] |
Yang Q, He Z, Liu W, Yang Z, Yu S, Shieh W, Djordjevic I B. 1-Tb/s large girth LDPC-coded coherent optical OFDM transmission over 1040-km standard single-mode fiber. In: Processing of OFC 2011, paper JThA035
|
[21] |
Li C, Luo M, Xiao X, Li J, He Z, YangQ, YangZ,YuS.63-Tb/s (368×183.3-Gb/s) C- and L-band all-Raman transmission over 160-km SSMF using OFDM-16QAM modulation. Chinese Optics Letters, 2014, 12(4): 040601–040604
|
[22] |
Luo M, Li C, Yang Q, He Z, Xu J, Zhang Z, Yu S. 100.3-Tb/s(375×267.27-Gb/s) C- and L-band transmission over 80-km SSMF using DFT-S OFDM 128-QAM. In: Processing of Asia Communications and Photonics Conference 2014, PDP paper AF4B.1
|
[23] |
Luo M, Mo Q, Li X, Hu R, Qiu Y, Li C, Liu Z, Liu W, Yu H, Du W, Xu J, He Z, Yang Q, Yu S. Transmission of 200 Tb/s (375×3×178.125 Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF. Frontiers of Optoelectronics, 2015, 8(4): 394–401
CrossRef
Google scholar
|
[24] |
Li C, Djordjevic I B, Luo M, He Z, Liu W, Yang Q, Xiao X, Xue D, Yu S, Shieh W. Ultra long-haul transmission of a 1-Tb/s LDPC-coded DFT-S OFDM-8PSK superchannel over 12160 km. In: Processing of Asia Communications and Photonics Conference 2013, PDP Paper AF2C.2
|
[25] |
Luo M, Zhang Z, Li C, Xu J, Zhang X, Li J, He Z, Hu R, Yang Q, Yu S. Real-time single laser based 3.2 Tb/s (32×100-Gb/s) PM-QPSK transmission using coherent detection over 2080-km SSMF. In: Processing of Asia Communications and Photonics Conference 2014, paper ATh4E.2
|
[26] |
Li C, Zhang X, Li H, Li C, Luo M, Li Z, Xu J, Yang Q, Yu S. Experimental demonstration of 429.96-Gb/s OFDM /OQAM-64QAM over 400-km SSMF transmission within a 50-GHz Grid. IEEE Photonics Journal, 2014, 6(4): 1–8
|
[27] |
Zeng T, Pan Y, Luo M, Wang Y, Hu R, Yang Q, Yu S. The manipulated rotating BPSK technique compatible with conventional CMA algorithm. In: Processing of OFC 2015, paper TH2A.1
|
/
〈 | 〉 |