Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects

Anjin LIU, Dieter BIMBERG

PDF(1732 KB)
PDF(1732 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (2) : 249-258. DOI: 10.1007/s12200-016-0611-6
REVIEW ARTICLE
REVIEW ARTICLE

Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects

Author information +
History +

Abstract

Optical interconnects (OIs) are the only solution to fulfil both the requirements on large bandwidth and minimum power consumption of data centers and high-performance computers (HPCs). Vertical-cavity surface-emitting lasers (VCSELs) are the ideal light sources for OIs and have been widely deployed. This paper will summarize the progress made on modulation speed, energy efficiency, and temperature stability of VCSELs. Especially VCSELs with surface nanostructures will be reviewed in depth. Such lasers will provide new opportunities to further boost the performance of VCSELs and open a new door for energy-efficient OIs.

Keywords

optical interconnects (OIs) / vertical-cavity surface-emitting laser (VCSEL) / subwavelength grating / modulation speed / energy efficiency

Cite this article

Download citation ▾
Anjin LIU, Dieter BIMBERG. Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects. Front. Optoelectron., 2016, 9(2): 249‒258 https://doi.org/10.1007/s12200-016-0611-6

References

[1]
Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2014–2019 White Paper, http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_ White_Paper.html
[2]
TOP500 supercomputer list of November 2015, http://www.top500.org/statistics/perfdevel/
[3]
Savage N. Linking with light. IEEE Spectrum, 2002, 39(8): 32–36
CrossRef Google scholar
[4]
Benner A F, Ignatowski M, Kash J A, Kuchta D M, Ritter M B. Exploitation of optical interconnects in future server architectures. IBM Journal of Research and Development, 2005, 49(4/5): 755–775
CrossRef Google scholar
[5]
Coteus P W, Knickerbocker J U, Lam C H, Vlasov Y A. Technologies for exascale systems. IBM Journal of Research and Development, 2011, 55(5): 14-1–14-12
[6]
Lam C F, Liu H, Koley B, Zhao X, Kamalov V, Gill V. Fiber optic communication technologies: what’s needed for datacenter network operations. IEEE Communications Magazine, 2010, 48(7): 32–39
CrossRef Google scholar
[7]
Borkar S. Role of interconnects in the future of computing. Journal of Lightwave Technology, 2013, 31(24): 3927–3933
CrossRef Google scholar
[8]
Taubenblatt M A. Optical interconnects for high-performance computing. Journal of Lightwave Technology, 2012, 30(4): 448–457
CrossRef Google scholar
[9]
Miller D A B. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE, 2009, 97(7): 1166–1185
CrossRef Google scholar
[10]
Miller D A B. Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE, 2000, 88(6): 728–749
CrossRef Google scholar
[11]
Bimberg D. Ultrafast VCSELs for Datacom. IEEE Photonics Journal, 2010, 2(2): 273–275
CrossRef Google scholar
[12]
Larsson A. Advances in VCSELs for communication and sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1552–1567
CrossRef Google scholar
[13]
Tatum J A, Gazula D, Graham L A, Guenter J K, Johnson R H, King J, Kocot C, Landry G D, Lyubomirsky I, MacInnes A N, Shaw E M, Balemarthy K, Shubochkin R, Vaidya D, Yan M, Tang F. VCSEL-based interconnects for current and future data centers. Journal of Lightwave Technology, 2015, 33(4): 727–732
CrossRef Google scholar
[14]
Grabherr M, Intemann S, King R, Wabra S, Jäger R, Riedl M. VCSEL arrays for high aggregate bandwidth of up to 1.34 Tbps. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9001: 900105-1–900105-10
[15]
Michalzik R. VCSELs-Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Berlin: Springer, 2013, 166
[16]
Blokhin S A, Lott J A, Mutig A, Fiol G, Ledentsov N N, Maximov M V, Nadtochiy A M, Shchukin V A, Bimberg D. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s. Electronics Letters, 2009, 45(10): 501–503
CrossRef Google scholar
[17]
Kuchta D, Rylyakov A, Doany F E, Schow C, Proesel J, Baks C, Westbergh P, Gustavsson J, Larsson A A. 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link. IEEE Photonics Technology Letters, 2015, 27(6): 577–580
CrossRef Google scholar
[18]
Shi J W, Wei Z R, Chi K L, Jiang J W, Wun J M, Lu I C, Chen J, Yang Y J. Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850 nm for short to medium reach (2 km) optical interconnects. Journal of Lightwave Technology, 2013, 31(24): 4037–4044
CrossRef Google scholar
[19]
Hanson D. Case for using 980 nm (rather than 850 nm) VCSELs for serial 10 Gb/s links with new higher-bandwidth 50 MMF.1999 [Online]. http://www.ieee802.org/3/10G_study/public/july99/hanson_1_0799.pdf
[20]
Chang Y C, Coldren L A. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 704–715
CrossRef Google scholar
[21]
Mutig A, Lott J A, Blokhin S A, Wolf P, Moser P, Hofmann W, Nadtochiy A M, Payusov A, Bimberg D. Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980 nm vertical cavity surface emitting lasers. Applied Physics Letters, 2010, 97(15): 151101
CrossRef Google scholar
[22]
Wolf P, Moser P, Larisch G, Hofmann W, Bimberg D. High-speed and temperature-stable, oxide-confined 980 nm VCSELs for optical interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701207
CrossRef Google scholar
[23]
Héroux J B, Kise T, Funabashi M, Aoki T, Schow C L, Rylyakov A V, Nakagawa S. Energy-efficient 1060-nm optical link operating up to 28 Gb/s. Journal of Lightwave Technology, 2015, 33(4): 733–740
CrossRef Google scholar
[24]
Hatakeyama H, Anan T, Akagawa T, Fukatsu K, Suzuki N, Tokutome K, Tsuji M. Highly reliable high-speed 1.1-mm-range VCSELs with InGaAs/GaAsP-MQWs. IEEE Journal of Quantum Electronics, 2010, 46(6): 890–897
CrossRef Google scholar
[25]
Müller M, Wolf P, Gründl T, Grasse C, Rosskopf J, Hofmann W, Bimberg D, Amann M C. Energy-efficient 1.3 m short-cavity VCSELs for 30 Gb/s error-free optical links. In: Proceedings of 23rd Semiconductor Laser Conference (ISLC), 2012, 1–2
[26]
Müller M, Hofmann W, Gründl T, Horn M, Wolf P, Nagel R D, Rönneberg E, Böhm G, Bimberg D, Amann M C. 1550-nm high-speed short-cavity VCSELs. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1158–1166
CrossRef Google scholar
[27]
Moser P, Hofmann W, Wolf P, Lott J A, Larisch G, Payusov A S, Ledentsov N N, Bimberg D. 81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects. Applied Physics Letters, 2011, 98(23): 231106
CrossRef Google scholar
[28]
Moser P, Lott J A, Wolf P, Larisch G, Li H, Ledentsov N N, Bimberg D. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s. Electronics Letters, 2012, 48(20): 1292–1294
CrossRef Google scholar
[29]
Haglund E, Westbergh P, Gustavsson J S, Haglund E P, Larsson A, Geen M, Joel A. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electronics Letters, 2015, 51(14): 1096–1098
CrossRef Google scholar
[30]
Li H, Wolf P, Moser P, Larisch G, Mutig A, Lott J A, Bimberg D. Energy-efficient and temperature-stable oxide-confined 980 nm VCSELs operating error-free at 38 Gbit/s at 85°C. Electronics Letters, 2014, 50(2): 103–105
CrossRef Google scholar
[31]
Moser P, Lott J A, Wolf P, Larisch G, Li H, Bimberg D. Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85°C. Electronics Letters, 2014, 50(19): 1369–1371
CrossRef Google scholar
[32]
Kuchta D M, Rylyakov A V, Schow C L, Proesel J E, Baks C W, Westbergh P, Gustavsson J S, Larsson A A. 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90°C. Journal of Lightwave Technology, 2015, 33(4): 802–810
CrossRef Google scholar
[33]
Tan F, Wu C H, Feng M, Holonyak N Jr. Energy efficient microcavity lasers with 20 and 40 Gb/s data transmission. Applied Physics Letters, 2011, 98(19): 191107
CrossRef Google scholar
[34]
Wu C H, Tan F, Feng M, Holonyak N Jr. The effect of mode spacing on the speed of quantum-well microcavity lasers. Applied Physics Letters, 2010, 97(9): 091103
CrossRef Google scholar
[35]
Coldren L A, Corzine S W. Diode Lasers and Photonic Integrated Circuits. New York: Wiley, 1995
[36]
Westbergh P, Gustavsson J S, Kögel B, Haglund Å, Larsson A. Impact of photon lifetime on high-speed VCSEL performance. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1603–1613
CrossRef Google scholar
[37]
Mutig A, Bimberg D. Progress on high-speed 980nm VCSELs for short-reach optical interconnects. Advances in Optical Technologies, 2011, 2011: 290508
CrossRef Google scholar
[38]
Moser P, Wolf P, Mutig A, Larisch G, Unrau W, Hofmann W, Bimberg D. 85°C error-free operation at 38 Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers. Applied Physics Letters, 2012, 100(8): 081103
CrossRef Google scholar
[39]
Li H, Wolf P, Moser P, Larisch G, Mutig A, Lott A, Bimberg D H. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs. IEEE Journal of Quantum Electronics, 2014, 50(8): 613–621
CrossRef Google scholar
[40]
Zhou W, Zhao D, Shuai Y C, Yang H, Chuwongin S, Chadha A, Seo J H, Wang K X, Liu V, Ma Z, Fan S. Progress in 2D photonic crystal Fano resonance photonics. Progress in Quantum Electronics, 2014, 38(1): 1–74
CrossRef Google scholar
[41]
Mateus C F R, Huang M C Y, Deng Y, Neureuther A R, Chang-Hasnain C J. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photonics Technology Letters, 2004, 16(2): 518–520
CrossRef Google scholar
[42]
Mateus C F R, Huang M C Y, Chen L, Chang-Hasnain C J, Suzuki Y. Broad-band mirror (1.12–1.62 mm) using a subwavelength grating. IEEE Photonics Technology Letters, 2004, 16(7): 1676–1678
CrossRef Google scholar
[43]
Boutami S, Ben Bakir B, Leclercq J L, Letartre X, Rojo-Romeo P, Garrigues M, Viktorovitch P, Sagnes I, Legratiet L, Strassner M. Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter. Optics Express, 2006, 14(8): 3129–3137
CrossRef Pubmed Google scholar
[44]
Sciancalepore C, Bakir B B, Letartre X, Fedeli J M, Olivier N, Bordel D, Seassal C, Rojo-Romeo P, Regreny P, Viktorovitch P. Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration. Journal of Lightwave Technology, 2011, 29(13): 2015–2024
CrossRef Google scholar
[45]
Viktorovitch P, Bakir B B, Boutami S, Leclercq J L, Letartre X, Rojo-Romeo P, Seassal C, Zussy M, Cioccio L D, Fedeli J M. 3D harnessing of light with 2.5D photonic crystals. Laser & Photonics Reviews, 2010, 4(3): 401–413
CrossRef Google scholar
[46]
Magnusson R, Shokooh-Saremi M. Physical basis for wideband resonant reflectors. Optics Express, 2008, 16(5): 3456–3462
CrossRef Pubmed Google scholar
[47]
Shokooh-Saremi M, Magnusson R. Wideband leaky-mode resonance reflectors: influence of grating profile and sublayers. Optics Express, 2008, 16(22): 18249–18263
CrossRef Pubmed Google scholar
[48]
Karagodsky V, Sedgwick F G, Chang-Hasnain C J. Theoretical analysis of subwavelength high contrast grating reflectors. Optics Express, 2010, 18(16): 16973–16988
CrossRef Pubmed Google scholar
[49]
Liu A, Fu F, Wang Y, Jiang B, Zheng W. Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure. Optics Express, 2012, 20(14): 14991–15000
CrossRef Pubmed Google scholar
[50]
Debernardi P, Orta R, Gründl T, Amann M C. 3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 2013, 49(2): 137–145
CrossRef Google scholar
[51]
Gębski M, Kuzior O, Dems M, Wasiak M, Xie Y Y, Xu Z J, Wang Q J, Zhang D H, Czyszanowski T. Transverse mode control in high-contrast grating VCSELs. Optics Express, 2014, 22(17): 20954–20963
CrossRef Pubmed Google scholar
[52]
Huang M C Y, Zhou Y, Chang-Hasnain C J. A surface-emitting laser incorporating a high-indexcontrast subwavelength grating. Nature Photonics, 2007, 1(2): 119–122
CrossRef Google scholar
[53]
Huang M C Y, Zhou Y, Chang-Hasnain C J. A nanoelectromechanical tunable laser. Nature Photonics, 2008, 2(3): 180–184
CrossRef Google scholar
[54]
Boutami S, Benbakir B, Leclercq J L, Viktorovitch P. Compact and polarization controlled 1.55 mm vertical-cavity surface emitting laser using single-layer photonic crystal mirror. Applied Physics Letters, 2007, 91(7): 071105
CrossRef Google scholar
[55]
Hofmann W, Chase C, Müller M, Rao Y, Grasse C, Böhm G, Amann M C, Chang-Hasnain C J. Long-wavelength high-contrast grating vertical-cavity surface-emitting laser. IEEE Photonics Journal, 2010, 2(3): 415–422
CrossRef Google scholar
[56]
Ansbæk T, Chung I S, Semenova E S, Yvind K. 1060-nm tunable monolithic high index contrast subwavelength grating VCSEL. IEEE Photonics Technology Letters, 2013, 25(4): 365–367
CrossRef Google scholar
[57]
Inoue S, Kashino J, Matsutani A, Ohtsuki H, Miyashita T, Koyama F. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs. Japanese Journal of Applied Physics, 2014, 53(9): 090306
CrossRef Google scholar
[58]
Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar grating diffraction. Journal of the Optical Society of America, 1981, 71(7): 811–818
CrossRef Google scholar
[59]
Huang M C Y, Zhou Y, Chang-Hasnain C J. Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers. Applied Physics Letters, 2008, 92(17): 171108
CrossRef Google scholar
[60]
Liu A, Hofmann W, Bimberg D. Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs. Optics Express, 2014, 22(10): 11804–11811
CrossRef Pubmed Google scholar
[61]
Liu A, Hofmann W, Bimberg D. Integrated high-contrast-grating optical sensor using guided mode. IEEE Journal of Quantum Electronics, 2015, 51(1): 1–8
CrossRef Google scholar
[62]
Liu A, Hofmann W, Bimberg D. VCSELs with surface nanostructures. In: Proceedings of Asia Communications and Photonics Conference, 2014, ATh2B. 4
[63]
Zhao D, Ma Z, Zhou W. Field penetrations in photonic crystal Fano reflectors. Optics Express, 2010, 18(13): 14152–14158
CrossRef Pubmed Google scholar
[64]
Babic D I, Corzine S W. Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE Journal of Quantum Electronics, 1992, 28(2): 514–524
CrossRef Google scholar
[65]
Chung I S, Mørk J. Speed enhancement in VCSELs employing grating mirrors. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8633: 863308
CrossRef Google scholar
[66]
Rao Y, Yang W, Chase C, Huang M C Y, Worland D P, Khaleghi S, Chitgarha M R, Ziyadi M, Willner A E, Chang-Hasnain C J. Long-Wavelength VCSEL using high-contrast grating. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701311
CrossRef Google scholar
[67]
Karagodsky V, Pesala B, Chase C, Hofmann W, Koyama F, Chang-Hasnain C J. Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. Optics Express, 2010, 18(2): 694–699
CrossRef Pubmed Google scholar
[68]
Sciancalepore C, Bakir B B, Menezo S, Letartre X, Bordel D, Viktorovitch P. III–V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing. IEEE Photonics Technology Letters, 2013, 25(12): 1111–1113
CrossRef Google scholar
[69]
Liu A, Wolf P, Schulze J H, Bimberg D. Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry-Pérot filter array with GaInP sacrificial layer. IEEE Photonics Journal, 2016, 8(1): 2700509
[70]
Kumari S, Gustavsson J S, Wang R, Haglund E P, Westbergh P, Sanchez D, Haglund E, Haglund Å, Bengtsson J, Thomas N L, Roelkens G, Larsson A, Baets R. Integration of GaAs-based VCSEL array on SiN platform with HCG. Proceedings of the Society for Photo-Instrumentation Engineers, 2015, 9372: 93720U-1–93720U-7
[71]
Schares L, Kash J A, Doany F E, Schow C L, Schuster C, Kuchta D M, Pepeljugoski P K, Trewhella J M, Baks C W, John R A, Shan L, Kwark Y H, Budd R A, Chiniwalla P, Libsch F R, Rosner J, Tsang C K, Patel C S, Schaub J D, Dangel R, Horst F, Offrein B J, Kucharski D, Guckenberger D, Hegde S, Nyikal H, Lin C K, Tandon A, Trott G R, Nystrom M, Bour D P, Tan M R T, Dolfi D W. Terabus: terabit/second-class card-level optical interconnect technologies. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(5): 1032–1044
CrossRef Google scholar
[72]
Kaur K S, Subramanian A Z, Cardile P, Verplancke R, Van Kerrebrouck J, Spiga S, Meyer R, Bauwelinck J, Baets R, Van Steenberge G. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms. Optics Express, 2015, 23(22): 28264–28270
CrossRef Pubmed Google scholar
[73]
Louderback D A, Pickrell G W, Lin H C, Fish M A, Hindi J J, Guilfoyle P S. VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings. Electronics Letters, 2004, 40(17): 1064–1065
CrossRef Google scholar
[74]
Haglund E P, Kumari S, Westbergh P, Gustavsson J S, Roelkens G, Baets R, Larsson A. Silicon-integrated short-wavelength hybrid-cavity VCSEL. Optics Express, 2015, 23(26): 33634–33640
CrossRef Google scholar
[75]
Ferrier L, Romeo P R, Letartre X, Drouard E, Viktorovitch P. 3D integration of photonic crystal devices: vertical coupling with a silicon waveguide. Optics Express, 2010, 18(15): 16162–16174
CrossRef Pubmed Google scholar
[76]
Ferrara J, Yang W, Zhu L, Qiao P, Chang-Hasnain C J. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. Optics Express, 2015, 23(3): 2512–2523
CrossRef Pubmed Google scholar
[77]
Chung I S, Mørk J. Silicon-photonics light source realized by III–V/Si-grating-mirror laser. Applied Physics Letters, 2010, 97(15): 151113
CrossRef Google scholar
[78]
Park G C, Xue W, Taghizadeh A, Semenova E, Yvind K, Mørk J, Chung I S. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide. Laser & Photonics Reviews, 2015, 9(3): L11–L15
CrossRef Google scholar

Acknowledgements

We gratefully acknowledge the German Research Foundation (DFG) for funding via the collaborative research center 787 and the Alexander von Humboldt Foundation for supporting Anjin Liu by a Postdoctoral Research Fellowship. We thank W. Hofmann, G. Larisch, Hui Li, J. A. Lott, P. Moser, and P. Wolf for helpful discussion. Anjin Liu also gratefully acknowledges the support from Chinese Academy of Sciences (CAS) Pioneer Hundred Talents Program.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1732 KB)

Accesses

Citations

Detail

Sections
Recommended

/