Integrated coherent combining of angled-grating broad-area lasers

Yunsong ZHAO, Yeyu ZHU, Lin ZHU

PDF(1371 KB)
PDF(1371 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (2) : 290-300. DOI: 10.1007/s12200-016-0610-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Integrated coherent combining of angled-grating broad-area lasers

Author information +
History +

Abstract

In this paper, we investigated coherent beam combining of angled-grating broad-area lasers in a completely integrated approach. We obtained the simultaneous coherent beam combining and single transverse mode operation on a single chip through the integrated coupling regions and the transverse Bragg resonance (TBR) gratings, respectively. The proposed combining method can be easily extended to a zigzag-like laser array. We analyzed the scalability of the zigzag-like combining structure and compared it with other coherent combining methods. Two and six angled-grating broad-area lasers are fabricated and coherently combined by use of the proposed method. The high contrast interference fringes within an overall single lobe envelope in the measured far field prove that the emitters in the array are indeed coherently combined. By p-side-down bonding, we obtained over 1 W output power with over 90% combining efficiency in the two coherently combined lasers.

Keywords

semiconductor lasers / angled-grating broad-area lasers / coherent beam combining / high power / high brightness

Cite this article

Download citation ▾
Yunsong ZHAO, Yeyu ZHU, Lin ZHU. Integrated coherent combining of angled-grating broad-area lasers. Front. Optoelectron., 2016, 9(2): 290‒300 https://doi.org/10.1007/s12200-016-0610-7

References

[1]
Hanke C. High power semiconductor laser diodes. Informacije Midem-Journal of Microelectronics Electronic Components and Materials, 2001, 31(4): 232–236
[2]
Ziegler M, Tomm J W, Zeimer U, Elsaesser T. Imaging catastrophic optical mirror damage in high-power diode lasers. Journal of Electronic Materials, 2010, 39(6): 709–714
CrossRef Google scholar
[3]
DeMars S D, Dzurko K M, Lang R J, Welch D F, Scrifres D R, Hardy A. Angled-grating distributed feedback laser with 1 W CW single-mode diffraction-limited output at 980 nm. In: Proceedings of Summaries of papers presented at the Conference on Lasers and Electro-Optics, 1996. 1996, 77–78
[4]
DWong V V, DeMars S D, Schoenfelder A,Lang R J . Angled-grating distributed-feedback laser with 1.2 W CW single-mode diffraction-limited output at 10.6 μm. In: Proceedings of Summaries of papers presented at the Conference on Laser and Electro-Optics, 1998. 1998, 34–35
[5]
Paschke K, Bogatov A, Bugge F, Drakin A E, Fricke J, Guther R, Stratonnikov A A, Wenzel H, Erbert G, Trankle G. Properties of ion-implanted high-power angled-grating distributed-feedback lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(5): 1172–1178
CrossRef Google scholar
[6]
Fan T Y. Laser beam combining for high-power, high-radiance sources. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567–577
CrossRef Google scholar
[7]
Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tünnermann A, Ludewigt K, Gowin M, ten Have E, Jung M. High average power spectral beam combining of four fiber amplifiers to 8.2 kW. Optics Letters, 2011, 36(16): 3118–3120
CrossRef Pubmed Google scholar
[8]
Andrusyak O, Smirnov V, Venus G, Glebov L. Beam combining of lasers with high spectral density using volume Bragg gratings. Optics Communications, 2009, 282(13): 2560–2563
CrossRef Google scholar
[9]
Chann B, Huang R K, Missaggia L J, Harris C T, Liau Z L, Goyal A K, Donnelly J P, Fan T Y, Sanchez-Rubio A, Turner G W. Near-diffraction-limited diode laser arrays by wavelength beam combining. Optics Letters, 2005, 30(16): 2104–2106
CrossRef Pubmed Google scholar
[10]
Vijayakumar D, Jensen O B, Ostendorf R, Westphalen T, Thestrup B. Spectral beam combining of a 980 nm tapered diode laser bar. Optics Express, 2010, 18(2): 893–898
CrossRef Pubmed Google scholar
[11]
Welch D F, Scifres D, Cross P, Kung H, Streifer W, Burnham R D, Yaeli J. High-power (575 mW) single-lobed emission from a phased-array laser. Electronics Letters, 1985, 21(14): 603–605
CrossRef Google scholar
[12]
Kapon E, Katz J, Yariv A. Supermode analysis of phase-locked arrays of semiconductor lasers. Optics Letters, 1984, 9(4): 125–127
CrossRef Pubmed Google scholar
[13]
Welch D F, Cross P S, Scifres D R, Streifer W, Burnham R D. High-power (CW) in-phase locked “Y” coupled laser arrays.. Applied Physics Letters, 1986, 49(24): 1632–1634
CrossRef Google scholar
[14]
Botez D, Hayashida P, Mawst L J, Roth T J. Diffraction-limited-beam, high-power operation from X-junction coupled phase-locked arrays of AlGaAs/GaAs diode lasers. Applied Physics Letters, 1988, 53(15): 1366–1368
CrossRef Google scholar
[15]
Hermansson B, Yevick D. Analysis of Y-junction and coupled laser arrays. Applied Optics, 1989, 28(1): 66–73
CrossRef Pubmed Google scholar
[16]
Botez D, Mawst L J, Peterson G, Roth T J. Resonant optical transmission and coupling in phase-locked diode laser arrays of antiguides: the resonant optical waveguide array. Applied Physics Letters, 1989, 54(22): 2183–2185
CrossRef Google scholar
[17]
Zmudzinski C, Botez D, Mawst L J, Tu C, Frantz L. Coherent 1 W continuous wave operation of large-aperture resonant arrays of antiguided diode lasers. Applied Physics Letters, 1993, 62(23): 2914–2916
CrossRef Google scholar
[18]
Chang-Hasnain C, Welch D F, Scifres D R, Whinnery J R, Dienes A, Burnham R D. Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity. Applied Physics Letters, 1986, 49(11): 614–616
CrossRef Google scholar
[19]
Henderson G A, Begley D L. Injection-locked semiconductor laser array using a graded-index rod: a computational model. Applied Optics, 1989, 28(21): 4548–4551
CrossRef Pubmed Google scholar
[20]
Waarts R, Mehuys D, Nam D, Welch D, Streifer W, Scifres D. High-power, CW, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity. Applied Physics Letters, 1991, 58(23): 2586–2588
CrossRef Google scholar
[21]
Mehuys D, Streifer W, Waarts R G, Welch D F. Modal analysis of linear Talbot-cavity semiconductor lasers. Optics Letters, 1991, 16(11): 823–825
CrossRef Pubmed Google scholar
[22]
Liu B, Liu Y, Braiman Y. Coherent beam combining of high power broad-area laser diode array with a closed-V-shape external Talbot cavity. Optics Express, 2010, 18(7): 7361–7368
CrossRef Pubmed Google scholar
[23]
Corcoran C J, Pasch K A. Modal analysis of a self-Fourier laser. Journal of Optics. A, Pure and Applied Optics, 2005, 7(5): L1–L7
CrossRef Google scholar
[24]
Corcoran C J, Durville F. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity. Applied Physics Letters, 2005, 86(20): 201118
CrossRef Google scholar
[25]
Goldberg L, Weller J F, Mehuys D, Welch D F, Scifres D R. 12 W broad area semiconductor amplifier with diffraction-limited optical output. Electronics Letters, 1991, 27(11): 927–929
CrossRef Google scholar
[26]
Walpole J N, Kintzer E S, Chinn S R, Wang C A, Missaggia L J. High-power strained-layer InGaAs/AlGaAs tapered traveling wave amplifier. Applied Physics Letters, 1992, 61(7): 740–742
CrossRef Google scholar
[27]
Shay T M, Benham V, Baker J T, Sanchez A D, Pilkington D, Lu C A, 0. Self-synchronous and self-referenced coherent beam combination for large optical arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 480–486
CrossRef Google scholar
[28]
Cheung E C, Ho J G, Goodno G D, Rice R R, Rothenberg J, Thielen P, Weber M, Wickham M. Diffractive-optics-based beam combination of a phase-locked fiber laser array. Optics Letters, 2008, 33(4): 354–356
CrossRef Pubmed Google scholar
[29]
Goodno G D, McNaught S J, Rothenberg J E, McComb T S, Thielen P A, Wickham M G, Weber M E. Active phase and polarization locking of a 1.4 kW fiber amplifier. Optics Letters, 2010, 35(10): 1542–1544
CrossRef Pubmed Google scholar
[30]
Uberna R, Bratcher A, Alley T G, Sanchez A D, Flores A S, Pulford B. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide. Optics Express, 2010, 18(13): 13547–13553
CrossRef Pubmed Google scholar
[31]
Wickham M. Coherent beam combining of fiber amplifiers and solid-state lasers including the use of diffractive optical elements. In: Proceedings of Conference on Lasers and Electro-Optics, OSA. 2010, paper CThG2
[32]
Augst S J, Montoya J, Creedon K, Kansky J, Fan T Y, Sanchez-Rubio A. Intracavity coherent beam combining of 21 semiconductor gain elements using SPGD. In: Proceedings of CLEO: Lasers and Electro-Optics. 2012, paper CTu1D.1
[33]
Huang R K, Chan B, Missaggia L J, Augst S J, Connors M K, Turner G W, Sanchez-Rubio A, Donnelly J P, Hostetler J L, Miester C, Dorsch F. Coherently combined diode laser arrays and stacks/ In: Proceedings of CLEO: Quantum Electronics and Laser Science. 2009, paper CWF1
[34]
Sarangan A M, Wright M W, Marciante J R, Bossert D J. Spectral properties of angled-grating high-power semiconductor lasers. IEEE Journal of Quantum Electronics, 1999, 35(8): 1220–1230
CrossRef Google scholar
[35]
Glova A F. Phase locking of optically coupled lasers. Quantum Electronics, 2003, 33(4): 283–306
CrossRef Google scholar
[36]
Wu T W, Chang W Z, Galvanauskas A, Winful H G. Model for passive coherent beam combining in fiber laser arrays. Optics Express, 2009, 17(22): 19509–19518
CrossRef Pubmed Google scholar
[37]
Chang W Z, Wu T W, Winful H G, Galvanauskas A. Array size scalability of passively coherently phased fiber laser arrays. Optics Express, 2010, 18(9): 9634–9642
CrossRef Pubmed Google scholar
[38]
Chen K L, Wang S. Single-lobe symmetric coupled laser arrays. Electronics Letters, 1985, 21(8): 347–349
CrossRef Google scholar
[39]
Chen K, Wang S. Analysis of symmetric Y junction laser arrays with uniform near field distribution. Electronics Letters, 1986, 22(12): 644–645
CrossRef Google scholar
[40]
Bachmann F, Loosen P, Poprawe R, eds. High Power Diode Lasers. In:Ultrashort Pulse Laser Technology. Berlin: Springer, 2006
[41]
Nabors C D. Effects of phase errors on coherent emitter arrays. Applied Optics, 1994, 33(12): 2284–2289
CrossRef Pubmed Google scholar

Acknowledgements

The authors acknowledge funding support from Army Research Office (ARO). The authors also acknowledge the use of the Gatech Nanotechnology Research Center Facility in the completion of this work.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1371 KB)

Accesses

Citations

Detail

Sections
Recommended

/