Integrated coherent combining of angled-grating broad-area lasers
Yunsong ZHAO, Yeyu ZHU, Lin ZHU
Integrated coherent combining of angled-grating broad-area lasers
In this paper, we investigated coherent beam combining of angled-grating broad-area lasers in a completely integrated approach. We obtained the simultaneous coherent beam combining and single transverse mode operation on a single chip through the integrated coupling regions and the transverse Bragg resonance (TBR) gratings, respectively. The proposed combining method can be easily extended to a zigzag-like laser array. We analyzed the scalability of the zigzag-like combining structure and compared it with other coherent combining methods. Two and six angled-grating broad-area lasers are fabricated and coherently combined by use of the proposed method. The high contrast interference fringes within an overall single lobe envelope in the measured far field prove that the emitters in the array are indeed coherently combined. By p-side-down bonding, we obtained over 1 W output power with over 90% combining efficiency in the two coherently combined lasers.
semiconductor lasers / angled-grating broad-area lasers / coherent beam combining / high power / high brightness
[1] |
Hanke C. High power semiconductor laser diodes. Informacije Midem-Journal of Microelectronics Electronic Components and Materials, 2001, 31(4): 232–236
|
[2] |
Ziegler M, Tomm J W, Zeimer U, Elsaesser T. Imaging catastrophic optical mirror damage in high-power diode lasers. Journal of Electronic Materials, 2010, 39(6): 709–714
CrossRef
Google scholar
|
[3] |
DeMars S D, Dzurko K M, Lang R J, Welch D F, Scrifres D R, Hardy A. Angled-grating distributed feedback laser with 1 W CW single-mode diffraction-limited output at 980 nm. In: Proceedings of Summaries of papers presented at the Conference on Lasers and Electro-Optics, 1996. 1996, 77–78
|
[4] |
DWong V V, DeMars S D, Schoenfelder A,Lang R J . Angled-grating distributed-feedback laser with 1.2 W CW single-mode diffraction-limited output at 10.6 μm. In: Proceedings of Summaries of papers presented at the Conference on Laser and Electro-Optics, 1998. 1998, 34–35
|
[5] |
Paschke K, Bogatov A, Bugge F, Drakin A E, Fricke J, Guther R, Stratonnikov A A, Wenzel H, Erbert G, Trankle G. Properties of ion-implanted high-power angled-grating distributed-feedback lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(5): 1172–1178
CrossRef
Google scholar
|
[6] |
Fan T Y. Laser beam combining for high-power, high-radiance sources. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567–577
CrossRef
Google scholar
|
[7] |
Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tünnermann A, Ludewigt K, Gowin M, ten Have E, Jung M. High average power spectral beam combining of four fiber amplifiers to 8.2 kW. Optics Letters, 2011, 36(16): 3118–3120
CrossRef
Pubmed
Google scholar
|
[8] |
Andrusyak O, Smirnov V, Venus G, Glebov L. Beam combining of lasers with high spectral density using volume Bragg gratings. Optics Communications, 2009, 282(13): 2560–2563
CrossRef
Google scholar
|
[9] |
Chann B, Huang R K, Missaggia L J, Harris C T, Liau Z L, Goyal A K, Donnelly J P, Fan T Y, Sanchez-Rubio A, Turner G W. Near-diffraction-limited diode laser arrays by wavelength beam combining. Optics Letters, 2005, 30(16): 2104–2106
CrossRef
Pubmed
Google scholar
|
[10] |
Vijayakumar D, Jensen O B, Ostendorf R, Westphalen T, Thestrup B. Spectral beam combining of a 980 nm tapered diode laser bar. Optics Express, 2010, 18(2): 893–898
CrossRef
Pubmed
Google scholar
|
[11] |
Welch D F, Scifres D, Cross P, Kung H, Streifer W, Burnham R D, Yaeli J. High-power (575 mW) single-lobed emission from a phased-array laser. Electronics Letters, 1985, 21(14): 603–605
CrossRef
Google scholar
|
[12] |
Kapon E, Katz J, Yariv A. Supermode analysis of phase-locked arrays of semiconductor lasers. Optics Letters, 1984, 9(4): 125–127
CrossRef
Pubmed
Google scholar
|
[13] |
Welch D F, Cross P S, Scifres D R, Streifer W, Burnham R D. High-power (CW) in-phase locked “Y” coupled laser arrays.. Applied Physics Letters, 1986, 49(24): 1632–1634
CrossRef
Google scholar
|
[14] |
Botez D, Hayashida P, Mawst L J, Roth T J. Diffraction-limited-beam, high-power operation from X-junction coupled phase-locked arrays of AlGaAs/GaAs diode lasers. Applied Physics Letters, 1988, 53(15): 1366–1368
CrossRef
Google scholar
|
[15] |
Hermansson B, Yevick D. Analysis of Y-junction and coupled laser arrays. Applied Optics, 1989, 28(1): 66–73
CrossRef
Pubmed
Google scholar
|
[16] |
Botez D, Mawst L J, Peterson G, Roth T J. Resonant optical transmission and coupling in phase-locked diode laser arrays of antiguides: the resonant optical waveguide array. Applied Physics Letters, 1989, 54(22): 2183–2185
CrossRef
Google scholar
|
[17] |
Zmudzinski C, Botez D, Mawst L J, Tu C, Frantz L. Coherent 1 W continuous wave operation of large-aperture resonant arrays of antiguided diode lasers. Applied Physics Letters, 1993, 62(23): 2914–2916
CrossRef
Google scholar
|
[18] |
Chang-Hasnain C, Welch D F, Scifres D R, Whinnery J R, Dienes A, Burnham R D. Diffraction-limited emission from a diode laser array in an apertured graded-index lens external cavity. Applied Physics Letters, 1986, 49(11): 614–616
CrossRef
Google scholar
|
[19] |
Henderson G A, Begley D L. Injection-locked semiconductor laser array using a graded-index rod: a computational model. Applied Optics, 1989, 28(21): 4548–4551
CrossRef
Pubmed
Google scholar
|
[20] |
Waarts R, Mehuys D, Nam D, Welch D, Streifer W, Scifres D. High-power, CW, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity. Applied Physics Letters, 1991, 58(23): 2586–2588
CrossRef
Google scholar
|
[21] |
Mehuys D, Streifer W, Waarts R G, Welch D F. Modal analysis of linear Talbot-cavity semiconductor lasers. Optics Letters, 1991, 16(11): 823–825
CrossRef
Pubmed
Google scholar
|
[22] |
Liu B, Liu Y, Braiman Y. Coherent beam combining of high power broad-area laser diode array with a closed-V-shape external Talbot cavity. Optics Express, 2010, 18(7): 7361–7368
CrossRef
Pubmed
Google scholar
|
[23] |
Corcoran C J, Pasch K A. Modal analysis of a self-Fourier laser. Journal of Optics. A, Pure and Applied Optics, 2005, 7(5): L1–L7
CrossRef
Google scholar
|
[24] |
Corcoran C J, Durville F. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity. Applied Physics Letters, 2005, 86(20): 201118
CrossRef
Google scholar
|
[25] |
Goldberg L, Weller J F, Mehuys D, Welch D F, Scifres D R. 12 W broad area semiconductor amplifier with diffraction-limited optical output. Electronics Letters, 1991, 27(11): 927–929
CrossRef
Google scholar
|
[26] |
Walpole J N, Kintzer E S, Chinn S R, Wang C A, Missaggia L J. High-power strained-layer InGaAs/AlGaAs tapered traveling wave amplifier. Applied Physics Letters, 1992, 61(7): 740–742
CrossRef
Google scholar
|
[27] |
Shay T M, Benham V, Baker J T, Sanchez A D, Pilkington D, Lu C A, 0. Self-synchronous and self-referenced coherent beam combination for large optical arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 480–486
CrossRef
Google scholar
|
[28] |
Cheung E C, Ho J G, Goodno G D, Rice R R, Rothenberg J, Thielen P, Weber M, Wickham M. Diffractive-optics-based beam combination of a phase-locked fiber laser array. Optics Letters, 2008, 33(4): 354–356
CrossRef
Pubmed
Google scholar
|
[29] |
Goodno G D, McNaught S J, Rothenberg J E, McComb T S, Thielen P A, Wickham M G, Weber M E. Active phase and polarization locking of a 1.4 kW fiber amplifier. Optics Letters, 2010, 35(10): 1542–1544
CrossRef
Pubmed
Google scholar
|
[30] |
Uberna R, Bratcher A, Alley T G, Sanchez A D, Flores A S, Pulford B. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide. Optics Express, 2010, 18(13): 13547–13553
CrossRef
Pubmed
Google scholar
|
[31] |
Wickham M. Coherent beam combining of fiber amplifiers and solid-state lasers including the use of diffractive optical elements. In: Proceedings of Conference on Lasers and Electro-Optics, OSA. 2010, paper CThG2
|
[32] |
Augst S J, Montoya J, Creedon K, Kansky J, Fan T Y, Sanchez-Rubio A. Intracavity coherent beam combining of 21 semiconductor gain elements using SPGD. In: Proceedings of CLEO: Lasers and Electro-Optics. 2012, paper CTu1D.1
|
[33] |
Huang R K, Chan B, Missaggia L J, Augst S J, Connors M K, Turner G W, Sanchez-Rubio A, Donnelly J P, Hostetler J L, Miester C, Dorsch F. Coherently combined diode laser arrays and stacks/ In: Proceedings of CLEO: Quantum Electronics and Laser Science. 2009, paper CWF1
|
[34] |
Sarangan A M, Wright M W, Marciante J R, Bossert D J. Spectral properties of angled-grating high-power semiconductor lasers. IEEE Journal of Quantum Electronics, 1999, 35(8): 1220–1230
CrossRef
Google scholar
|
[35] |
Glova A F. Phase locking of optically coupled lasers. Quantum Electronics, 2003, 33(4): 283–306
CrossRef
Google scholar
|
[36] |
Wu T W, Chang W Z, Galvanauskas A, Winful H G. Model for passive coherent beam combining in fiber laser arrays. Optics Express, 2009, 17(22): 19509–19518
CrossRef
Pubmed
Google scholar
|
[37] |
Chang W Z, Wu T W, Winful H G, Galvanauskas A. Array size scalability of passively coherently phased fiber laser arrays. Optics Express, 2010, 18(9): 9634–9642
CrossRef
Pubmed
Google scholar
|
[38] |
Chen K L, Wang S. Single-lobe symmetric coupled laser arrays. Electronics Letters, 1985, 21(8): 347–349
CrossRef
Google scholar
|
[39] |
Chen K, Wang S. Analysis of symmetric Y junction laser arrays with uniform near field distribution. Electronics Letters, 1986, 22(12): 644–645
CrossRef
Google scholar
|
[40] |
Bachmann F, Loosen P, Poprawe R, eds. High Power Diode Lasers. In:Ultrashort Pulse Laser Technology. Berlin: Springer, 2006
|
[41] |
Nabors C D. Effects of phase errors on coherent emitter arrays. Applied Optics, 1994, 33(12): 2284–2289
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |