Femtosecond laser processing of microcavity lasers

Xuepeng ZHAN, Huailiang XU, Hongbo SUN

PDF(1026 KB)
PDF(1026 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (3) : 420-427. DOI: 10.1007/s12200-016-0581-8
REVIEW ARTICLE
REVIEW ARTICLE

Femtosecond laser processing of microcavity lasers

Author information +
History +

Abstract

In this paper, we reviewed the fabrications of functional microcavity lasers in soft materials such as polymer and protein by femtosecond laser processing. High-quality (Q) microdisks with a laser dye (Rhodamine B, RhB) acting as gain medium were fabricated that produced whispering-gallery-mode (WGM) lasing output. We also obtained unidirectional lasing output with a low lasing threshold in a deformed spiral microcavity at room temperature. Photonic-molecule (PM) microlasers were prepared to investigate the interaction and coupling effects of different cavities, and it was found that the distance between the two disks plays an important role in the lasing behaviors. Single-mode lasing was realized from a stacked PM microlaser through Vernier effect. Furthermore we adopted the biocompatible materials, RhB-doped proteins as a host material and fabricated a three-dimensional (3D) WGM microlaser, which operated well both in air and aqueous environment. The sensing of the protein microlasers to Na2SO4 concentration was investigated. Our results of fabricating high-Q microlasers with different materials reveal the potential applications of femtosecond laser processing in the areas of integrated optoelectronic and ultrahigh sensitive bio-sensing devices.

Graphical abstract

Keywords

femtosecond laser processing / microcavity lasers / polymer / protein

Cite this article

Download citation ▾
Xuepeng ZHAN, Huailiang XU, Hongbo SUN. Femtosecond laser processing of microcavity lasers. Front. Optoelectron., 2016, 9(3): 420‒427 https://doi.org/10.1007/s12200-016-0581-8

References

[1]
Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839–846
CrossRef Pubmed Google scholar
[2]
Wiersig J, Gies C, Jahnke F, Aßmann M, Berstermann T, Bayer M, Kistner C, Reitzenstein S, Schneider C, Höfling S, Forchel A, Kruse C, Kalden J, Hommel D. Direct observation of correlations between individual photon emission events of a microcavity laser. Nature, 2009, 460(7252): 245–249
CrossRef Pubmed Google scholar
[3]
Harayama T, Shinohara S. Two-dimensional microcavity lasers. Laser & Photonics Reviews, 2011, 5(2): 247–271
CrossRef Google scholar
[4]
He L, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers. Laser & Photonics Reviews, 2013, 7(1): 60–82
CrossRef Google scholar
[5]
Ilchenko V S, Matsko A B. Optical resonators with whispering-gallery modes-part II: applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 15–32
CrossRef Google scholar
[6]
Kosma K, Zito G, Schuster K, Pissadakis S. Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber. Optics Letters, 2013, 38(8): 1301–1303
CrossRef Pubmed Google scholar
[7]
Dai D, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light: Science & Applications, 2012,1(3): e1-1–e1-12
[8]
Kim K H, Bahl G, Lee W, Liu J, Tomes M, Fan X, Carmon T. Cavity optomechanics on a microfluidic resonator with water and viscous liquids. Light: Science & Applications, 2013, 2(11):e110-1–e110-5
[9]
Lai Y, Lan Y, Lu T. Strong light–matter interaction in ZnO microcavities. Light: Science & Applications, 2013, 2(6): e76-1–e76-7
[10]
Grossmann T, Hauser M, Beck T, Gohn-Kreuz C, Karl M, Kalt H, Vannahme C, Mappes T. High-Q conical polymeric microcavities. Applied Physics Letters, 2010, 96(1): 013303
CrossRef Google scholar
[11]
Ta V D, Chen R, Sun H D. Self-assembled flexible microlasers. Advanced Materials, 2012, 24(10): OP60–OP64
CrossRef Pubmed Google scholar
[12]
Chen R, Ta V D, Sun H D. Single mode lasing from hybrid hemispherical microresonators. Scientific Reports, 2012, 2: 244
CrossRef Pubmed Google scholar
[13]
Wu Y, Leung P T. Lasing threshold for whispering-gallery-mode microsphere lasers. Physical Review A, 1999, 60(1): 630–633
[14]
Fang H, Ding R, Lu S, Yang Y, Chen Q, Feng J, Huang Y, Sun H. Whispering-gallery mode lasing from patterned molecular single-crystalline microcavity array. Laser & Photonics Reviews, 2013, 7(2): 281–288
CrossRef Google scholar
[15]
Lu S Y, Fang H H, Feng J, Xia H, Zhang T Q, Chen Q D, Sun H B. Highly stable on-chip embedded organic whispering gallery mode lasers. Journal of Lightwave Technology, 2014, 32(13): 2415–2419
CrossRef Google scholar
[16]
Kitur J K, Podolskiy V A, Noginov M A. Stimulated emission of surface plasmon polaritons in a microcylinder cavity. Physical Review Letters, 2011, 106(18): 183903
[17]
Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X, Vahala K. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature, 2009, 457(7228): 455–458
CrossRef Pubmed Google scholar
[18]
Jiang X, Zou C, Wang L, Gong Q, Xiao Y. Whispering-gallery microcavities with unidirectional laser emission. Laser & Photonics Reviews, 2016, 10(1): 40–61
CrossRef Google scholar
[19]
Armani A M, Srinivasan A, Vahala K J. Soft lithographic fabrication of high Q polymer microcavity arrays. Nano Letters, 2007, 7(6): 1823–1826
CrossRef Pubmed Google scholar
[20]
Huang Y, Lin J, Yang Y, Yao Q, Lv X, Xiao J, Du Y. Unidirectional-emission single mode whispering-gallery-mode microlasers. In: Proceedings of SPIE, Microcavity Lasers and Applications I. 2012, 8236: 1–8
[21]
Wu X, Li H, Liu L, Xu L. Unidirectional single-frequency lasing from a ring-shaped coupled microcavity laser. Applied Physics Letters, 2008, 93(8): 081105
[22]
Kawata S, Sun H B, Tanaka T, Takada K. Finer features for functional microdevices. Nature, 2001, 412(6848): 697–698
CrossRef Pubmed Google scholar
[23]
Zhang Y, Chen Q, Xia H, Sun H. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448
CrossRef Google scholar
[24]
Liu Z P, Jiang X F, Li Y, Xiao Y F, Wang L, Ren J L, Zhang S J, Yang H, Gong Q. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Applied Physics Letters, 2013, 102(22): 221108
CrossRef Google scholar
[25]
Song J, Lin J, Tang J, Liao Y, He F, Wang Z, Qiao L, Sugioka K, Cheng Y. Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining. Optics Express, 2014, 22(12): 14792–14802
CrossRef Pubmed Google scholar
[26]
Lin J, Yu S, Ma Y, Fang W, He F, Qiao L, Tong L, Cheng Y, Xu Z. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Optics Express, 2012, 20(9): 10212–10217
CrossRef Pubmed Google scholar
[27]
Lin J, Xu Y, Fang Z, Wang M, Song J, Wang N, Qiao L, Fang W, Cheng Y.Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Scientific Reports, 2015, 5: 8072
CrossRef Pubmed Google scholar
[28]
Lin J, Xu Y, Tang J, Wang N, Song J, He F, Fang W, Cheng Y. Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining. Applied Physics A, Materials Science & Processing, 2014, 116(4): 2019–2023
CrossRef Google scholar
[29]
Ta V D, Chen R, Sun H. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Advanced Optical Materials, 2014, 2(3): 220–225
CrossRef Google scholar
[30]
Joshi M P, Pudavar H E, Swiatkiewicz J, Prasad P N, Reianhardt B A. Three-dimensional optical circuitry using two-photon-assisted polymerization. Applied Physics Letters, 1999, 74(2): 170–172
CrossRef Google scholar
[31]
Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H, Xiao F. Direct imprinting of microcircuits on grapheme oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20
CrossRef Google scholar
[32]
Xu B B, Xia H, Niu L G, Zhang Y L, Sun K, Chen Q D, Xu Y, Lv Z Q, Li Z H, Misawa H, Sun H B. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small, 2010, 6(16): 1762–1766
CrossRef Pubmed Google scholar
[33]
Xia H, Wang J, Tian Y, Chen Q D, Du X B, Zhang Y L, He Y, Sun H B. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Advanced Materials, 2010, 22(29): 3204–3207
CrossRef Pubmed Google scholar
[34]
Wang J, He Y, Xia H, Niu L G, Zhang R, Chen Q D, Zhang Y L, Li Y F, Zeng S J, Qin J H, Lin B C, Sun H B. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab on a Chip, 2010, 10(15): 1993–1996
CrossRef Pubmed Google scholar
[35]
Huang Q, Zhan X, Hou Z, Chen Q, Xu H. Polymer photonic-molecule microlaser fabricated by femtosecond laser direct writing. Optics Communications, 2016, 362: 73–76
CrossRef Google scholar
[36]
Grossmann T, Schleede S, Hauser M, Beck T, Thiel M, von Freymann G, Mappes T, Kalt H. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Optics Express, 2011, 19(12): 11451–11456
CrossRef Pubmed Google scholar
[37]
Liu Z, Jiang X, Li Y, Xiao Y, Wang L, Ren J, Zhang S, Yang H, Gong Q. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Applied Physics Letters, 2013, 102(22): 221108
CrossRef Google scholar
[38]
Ku J F, Chen Q D, Zhang R, Sun H B. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing. Optics Letters, 2011, 36(15): 2871–2873
CrossRef Pubmed Google scholar
[39]
Sasaki F, Kobayashi S, Haraichi S, Fujiwara S, Bando K, Masumoto Y, Hotta S. Microdisk and microring lasers of thiophene–phenylene co-oligomers embedded in Si/SiO2 substrates. Advanced Materials, 2007, 19(21): 3653–3655
CrossRef Google scholar
[40]
Grossmann T, Schleede S, Hauser M, Beck T, Thiel M, von Freymann G, Mappes T, Kalt H. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Optics Express, 2011, 19(12): 11451–11456
CrossRef Pubmed Google scholar
[41]
Juodkazis S, Fujiwara K, Takahashi T, Matsuo S, Misawa H. Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity. Journal of Applied Physics, 2002, 91(3): 916–921
CrossRef Google scholar
[42]
Ben-Messaoud T, Zyss J. Unidirectional laser emission from polymer-based spiral microdisks. Applied Physics Letters, 2005, 86(24): 241110
CrossRef Google scholar
[43]
Zhan X P, Ku J F, Xu Y X, Zhang X L, Zhao J, Fang W, Xu H L, Sun H B. Unidirectional lasing from a spiral-shaped microcavity of dye-doped polymers fabricated by femtosecond laser direct writing. IEEE Photonics Technology Letters, 2015, 27(3): 311–314
CrossRef Google scholar
[44]
Hara Y, Mukaiyama T, Takeda K, Kuwata-Gonokami M. Photonic molecule lasing. Optics Letters, 2003, 28(24): 2437–2439
CrossRef Pubmed Google scholar
[45]
Grossmann T, Wienhold T, Bog U, Beck T, Friedmann C, Kalt H, Mappes T. Polymeric photonic molecule super-mode lasers on silicon. Light: Science & Applications, 2013, 2(5): e82-1–e82-4
[46]
Ku J F, Chen Q D, Ma X W, Yang Y D, Huang Y Z, Xu H L, Sun H B. Photonic-molecule single-mode laser. IEEE Photonics Technology Letters, 2015, 27(11): 1157–1160
CrossRef Google scholar
[47]
Sun Y, Hou Z, Sun S, Zheng B, Ku J, Dong W, Chen Q, Sun H. Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness. Scientific Reports, 2015, 5: 12852

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1026 KB)

Accesses

Citations

Detail

Sections
Recommended

/