Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films
Yuanyuan ZHOU, Hector F. GARCES, Nitin P. PADTURE
Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films
The importance of methylammonium lead triiodide (CH3NH3PbI3 or MAPbI3) organic-inorganic hybrid perovskites has shot up dramatically since their use in highly efficient thin-film perovskite solar cells (PSCs). However, the basic structural characterization of these fascinating materials remains sparse. In particular, Raman spectroscopy, which is a powerful vibrational spectroscopy characterization tool and complements other characterization methods, of MAPbI3 under ambient conditions is plagued with difficulties. Here, a systematic ambient Raman spectroscopy characterization study of MAPbI3 thin films is conducted under different conditions (excitation laser wavelength, integration time, filter characteristic). The results from this study help elucidate the possible sources of artifacts in the Raman spectra, and raise the awareness of the challenges in the ambient Raman spectroscopy of MAPbI3 perovskites. Approaches to overcome these challenges are suggested.
perovskite / solar cells / Raman spectroscopy / laser-degradation
[1] |
Weber D. CH3NH3SnBrxI3-x (x=0–3), a Sn(II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B, 1978, 33(8): 862–865
CrossRef
Google scholar
|
[2] |
Weber D. CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B, 1978, 33(12): 1443–1445
CrossRef
Google scholar
|
[3] |
Mitzi D B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials. In: Progress in Inorganic Chemistry. Karlin K D, ed. John Wiley & Sons: New York, 1999, 48: 1–121
CrossRef
Google scholar
|
[4] |
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051
CrossRef
Pubmed
Google scholar
|
[5] |
Im J H, Lee C R, Lee J W, Park S W, Park N G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088–4093
CrossRef
Pubmed
Google scholar
|
[6] |
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2: 591
CrossRef
Pubmed
Google scholar
|
[7] |
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643–647
CrossRef
Pubmed
Google scholar
|
[8] |
Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395–398
CrossRef
Pubmed
Google scholar
|
[9] |
Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I. Efficient inorganic-organic hybrid heterojunction solar cells containing perokskite compund and polymeric hole conductors. Nature Photonics, 2013, 7(6): 486–491
CrossRef
Google scholar
|
[10] |
Snaith H J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013, 4(21): 3623–3630
CrossRef
Google scholar
|
[11] |
Grätzel M. The light and shade of perovskite solar cells. Nature Materials, 2014, 13(9): 838–842
CrossRef
Pubmed
Google scholar
|
[12] |
Green M A, Ho-Baillie A, Snaith H J. The emergance of perovskite solar cells. Nature Photonics, 2014, 8(7): 506–514
CrossRef
Google scholar
|
[13] |
Jung H S, Park N G. Perovskite solar cells: from materials to devices. Small, 2015, 11(1): 10–25
CrossRef
Pubmed
Google scholar
|
[14] |
Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T C. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 2014, 13(5): 476–480
CrossRef
Pubmed
Google scholar
|
[15] |
Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Solar cells. Electron-hole diffusion lengths>175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970
CrossRef
Pubmed
Google scholar
|
[16] |
Yakunin S, Sytnyk M, Kriegner D, Shrestha S, Richter M, Matt G J, Azimi H, Brabec C, Stangl J, Kovalenko M V, Heiss W. Detection of X-ray photos by solution-processed lead halide perovskites. Nature Photonics, 2015, 9(7): 444–449
CrossRef
Google scholar
|
[17] |
Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N S, Yoo S, Im S H, Friend R H, Lee T W. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222–1225
CrossRef
Google scholar
|
[18] |
Zhao Y, Zhu K. Solution-chemistry engineering toward high-efficiency perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(23): 4175–4186
CrossRef
Pubmed
Google scholar
|
[19] |
Zhou Y, Game O S, Pang S, Padture N P. Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. Journal of Physical Chemistry Letters, 2015, 6(23): 4827–4839
CrossRef
Pubmed
Google scholar
|
[20] |
Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture N P, Cui G. Methylamine-Gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angewandte Chemie International Edition, 2015, 54(33): 9705–9709
CrossRef
Google scholar
|
[21] |
Quarti C, Grancini G, Mosconi E, Bruno P, Ball J M, Lee M M, Snaith H J, Petrozza A, Angelis F D. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. Journal of Physical Chemistry Letters, 2014, 5(2): 279–284
CrossRef
Pubmed
Google scholar
|
[22] |
Grancini G, Marras S, Prato M, Giannini C, Quarti C, De Angelis F, De Bastiani M, Eperon G E, Snaith H J, Manna L, Petrozza A. The impact of the crystallization process on the structural and optical properties of hybrid perovskite films for photovoltaics. Journal of Physical Chemistry Letters, 2014, 5(21): 3836–3842
CrossRef
Pubmed
Google scholar
|
[23] |
Brivio F, Frost J M, Skelton J M, Jackson A J, Weber O J, Weller M T, Goni A R, Leguy A M A, Barnes P F F, Walsh A. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(14): 144308
CrossRef
Google scholar
|
[24] |
Park B W, Jain S M, Zhang X, Hagfeldt A, Boschloo G, Edvinsson T. Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells. ACS Nano, 2015, 9(2): 2088–2101
CrossRef
Pubmed
Google scholar
|
[25] |
Ledinský M, Löper P, Niesen B, Holovský J, Moon S J, Yum J H, De Wolf S, Fejfar A, Ballif C. Raman spectroscopy of organic-inorganic halide perovskites. Journal of Physical Chemistry Letters, 2015, 6(3): 401–406
CrossRef
Pubmed
Google scholar
|
[26] |
Vandenabeele P. Practical Raman Spectroscopy: An Introduction. Wiley: New York, 2013
|
[27] |
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038
CrossRef
Pubmed
Google scholar
|
[28] |
Kutes Y, Ye L, Zhou Y, Pang S, Huey B D, Padture N P. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. Journal of Physical Chemistry Letters, 2014, 5(19): 3335–3339
CrossRef
Pubmed
Google scholar
|
[29] |
Kim H S, Im S H, Park N G. Oganolead halide perovskite: new horizons in solar cell research. Journal of Physical Chemistry C, 2014, 118(11): 5615–5625
CrossRef
Google scholar
|
[30] |
Woodward P M. Octahedral tilting in perovskites: I. geometrical considerations. Acta Crystallographica Section B, Structural Science, 1997, 53(1): 32–43
CrossRef
Google scholar
|
[31] |
Matsuishi K, Ishihara T, Onari S, Chang Y H, Park C H. Optical properties and structural phase transitions of lead-halide based inorganic-organic 3D and 2D perovskite semiconductors under high pressure. Physics Status Solidi, 2004, 241(14): 3328–3333
|
[32] |
Maalej A, Abid Y, Kallel A, Daoud A, Lautie A, Romain F. Phase transition and crystal synamics in the cubic perovskite CH3NH3PbCl3. Solid State Communications, 1997, 103(5): 279–284
CrossRef
Google scholar
|
[33] |
Zhou Y, Yang M, Wu W, Vasiliev A L, Zhu K, Padture N P. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(15): 8178–8184
CrossRef
Google scholar
|
[34] |
Yang M, Zhou Y, Zeng Y, Jiang C S, Padture N P, Zhu K. Square‐centimeter solution‐processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Advanced Materials, 2015, 27(41): 6363–6370
CrossRef
Google scholar
|
[35] |
Hu H, Wang D, Zhou Y, Zhang J, Lv S, Pang S, Chen X, Liu Z, Padture N P, Cui G. Vapour-based processing of hole-conductor-free CH3NH3PbI3 perovskite/C60 fullerene planar solar cells. RSC Advances, 2014, 4(55): 28964–28967
CrossRef
Google scholar
|
[36] |
Pisoni A, Jaćimović J, Barišić O S, Spina M, Gaál R, Forró L, Horváth E. Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3. Journal of Physical Chemistry Letters, 2014, 5(14): 2488–2492
CrossRef
Pubmed
Google scholar
|
[37] |
Khilji M Y, Sherman W F, Wilkinson G R. Raman study of three polytypes of PbI2. Journal of Raman Spectroscopy, 1982, 13(2): 127–133
CrossRef
Google scholar
|
[38] |
Baleva M, Tuncheva V. Optical characterization of lead monoxide films grown by laser-assisted deposition. Journal of Solid State Chemistry, 1994, 110(1): 36–42
CrossRef
Google scholar
|
/
〈 | 〉 |