High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes

Xiaoli ZHENG, Haining CHEN, Zhanhua WEI, Yinglong YANG, He LIN, Shihe YANG

PDF(2195 KB)
PDF(2195 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (1) : 71-80. DOI: 10.1007/s12200-016-0566-7
RESEARCH ARTICLE
RESEARCH ARTICLE

High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes

Author information +
History +

Abstract

This work explores the use of poly(3-hexylthiophene) (P3HT) modified carbon nanotubes (CNTs@P3HT) for the cathodes of hole transporter free, mesoscopic perovskite (CH3NH3PbI3) solar cells (PSCs), simultaneously achieving high-performance, high stability and low-cost PSCs. Here the thin P3HT modifier acts as an electron blocker to inhibit electron transfer into CNTs and a hydrophobic polymer binder to tightly cross-link the CNTs together to compact the carbon electrode film and greatly stabilize the solar cell. On the other hand, the presence of CNTs greatly improve the conductivity of P3HT. By optimizing the concentration of the P3HT modifier (2 mg/mL), we have improved the power conversion efficiencies (PCEs) of CNTs@P3HT based PSCs up to 13.43% with an average efficiency of 12.54%, which is much higher than the pure CNTs based PSCs (best PCE 10.59%) and the sandwich-type P3HT/CNTs based PSCs (best PCE 9.50%). In addition, the hysteresis of the CNTs@P3HT based PSCs is remarkably reduced due to the intimate interface between the perovskite and CNTs@P3HT electrodes. Degradation of the CNTs@ P3HT based PSCs is also strongly retarded as compared to cells employing the pure CNTs electrode when exposed to the ambient condition of 20%-40% humidity.

Keywords

poly(3-hexylthiophene) (P3HT) / carbon nanotube / CH3NH3PbI3 / mesoscopic perovskite solar cell (PSC) / carbon cathode

Cite this article

Download citation ▾
Xiaoli ZHENG, Haining CHEN, Zhanhua WEI, Yinglong YANG, He LIN, Shihe YANG. High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes. Front. Optoelectron., 2016, 9(1): 71‒80 https://doi.org/10.1007/s12200-016-0566-7

References

[1]
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051
CrossRef Pubmed Google scholar
[2]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2: 591
CrossRef Pubmed Google scholar
[3]
Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395–398
CrossRef Pubmed Google scholar
[4]
Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319
CrossRef Pubmed Google scholar
[5]
Park N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar Cell. Journal of Physical Chemistry Letters, 2013, 4(15): 2423–2429
CrossRef Google scholar
[6]
Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542–546
CrossRef Pubmed Google scholar
[7]
Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897–903
CrossRef Pubmed Google scholar
[8]
Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H, Grätzel M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid w-ammonium chlorides. Nature Chemistry, 2015, 7(9): 703–711
CrossRef Pubmed Google scholar
[9]
Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Gratzel M. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 2015, 8(3): 995–1004
CrossRef Google scholar
[10]
Roldán-Carmona C, Gratia P, Zimmermann I, Grancini G, Gao P, Graetzel M, Nazeeruddin M K. High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy & Environmental Science, 2015, 8(12): 3550–3556
CrossRef Google scholar
[11]
Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234–1237
CrossRef Pubmed Google scholar
[12]
Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 2012, 134(42): 17396–17399
CrossRef Pubmed Google scholar
[13]
Laban W A, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy & Environmental Science, 2013, 6(11): 3249–3253
CrossRef Google scholar
[14]
Batmunkh M, Shearer C J, Biggs M J, Shapter J G. Nanocarbons for mesoscopic perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9020–9031
CrossRef Google scholar
[15]
Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Letters, 2014, 14(10): 5561–5568
CrossRef Pubmed Google scholar
[16]
Ku Z, Rong Y, Xu M, Liu T, Han H. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Scientific Reports, 2013, 3: 3132
CrossRef Pubmed Google scholar
[17]
Wang J T W, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J, Nicholas R J. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Letters, 2014, 14(2): 724–730
CrossRef Pubmed Google scholar
[18]
Cao J, Liu Y M, Jing X, Yin J, Li J, Xu B, Tan Y Z, Zheng N. Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells. Journal of the American Chemical Society, 2015, 137(34): 10914–10917
CrossRef Pubmed Google scholar
[19]
Wei H Y, Xiao J Y, Yang Y Y, Lv S T, Shi J J, Xu X, Dong J, Luo Y H, Li D M, Meng Q B. Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells. Carbon, 2015, 93: 861–868
CrossRef Google scholar
[20]
Liu L, Mei A, Liu T, Jiang P, Sheng Y, Zhang L, Han H. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. Journal of the American Chemical Society, 2015, 137(5): 1790–1793
CrossRef Pubmed Google scholar
[21]
Wei Z, Chen H, Yan K, Yang S. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angewandte Chemie (International Edition), 2014, 53(48): 13239–13243
CrossRef Pubmed Google scholar
[22]
Yan K, Wei Z, Li J, Chen H, Yi Y, Zheng X, Long X, Wang Z, Wang J, Xu J, Yang S. High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. Small, 2015, 11(19): 2269–2274
CrossRef Pubmed Google scholar
[23]
Zhou H W, Shi Y T, Wang K, Dong Q S, Bai X G, Xing Y J, Du Y, Ma T L. Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells. Journal of Physical Chemistry C, 2015, 119(9): 4600–4605
CrossRef Google scholar
[24]
Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B. Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014, 6(18): 10505–10510
CrossRef Pubmed Google scholar
[25]
Li Z, Kulkarni S A, Boix P P, Shi E, Cao A, Fu K, Batabyal S K, Zhang J, Xiong Q, Wong L H, Mathews N, Mhaisalkar S G. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano, 2014, 8(7): 6797–6804
CrossRef Pubmed Google scholar
[26]
Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Letters, 2015, 15(4): 2402–2408
CrossRef Pubmed Google scholar
[27]
Wei Z H, Chen H N, Yan K Y, Zheng X L, Yang S H. Hysteresis-free multi-wall carbon nanotube-based perovskite solar cells with a high fill factor. Journal of Materials Chemistry A, 2015, doi: 10.1039/C5TA07714A
[28]
Rong Y G, Liu L F, Mei A Y, Li X, Han H W. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Advanced Energy Materials, 2015, 5(20): 1501066
CrossRef Google scholar
[29]
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298
CrossRef Pubmed Google scholar
[30]
Xu M, Rong Y, Ku Z, Mei A, Liu T, Zhang L, Li X, Han H. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(23): 8607–8611
CrossRef Google scholar
[31]
Zhang L, Liu T, Liu L, Hu M, Yang Y, Mei A, Han H. The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(17): 9165–9170
CrossRef Google scholar
[32]
Liu T, Liu L, Hu M, Yang Y, Zhang L, Mei A, Han H. Critical parameters in TiO2/ZrO2/carbon-based mesoscopic perovskite solar cell. Journal of Power Sources, 2015, 293: 533–538
CrossRef Google scholar
[33]
Wei Z H, Yan K Y, Chen H N, Yi Y, Zhang T, Long X, Li J K, Zhang L X, Wang J N, Yang S H. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy & Environmental Science, 2014, 7(10): 3326–3333
CrossRef Google scholar
[34]
Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H, Meng Q. An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Advances, 2014, 4(95): 52825–52830
CrossRef Google scholar
[35]
Zhou H, Shi Y, Dong Q, Zhang H, Xing Y, Wang K, Du Y, Ma T. Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. Journal of Physical Chemistry Letters, 2014, 5(18): 3241–3246
CrossRef Pubmed Google scholar
[36]
Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L. Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Applied Materials & Interfaces, 2014, 6(18): 16140–16146
CrossRef Pubmed Google scholar
[37]
Chen H N, Wei Z H, Zheng X L, Yang S H. A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy, 2015, 15: 216–226
CrossRef Google scholar
[38]
Zheng X L, Wei Z H, Chen H N, Bai Y, Xiao S, Zhang T, Yang S H. In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell. Journal of Energy Chemistry, 2015, doi: 10.1016/j.jechem.2015.10.003
[39]
Wei Z H, Zheng X L, Chen H N, Long X, Wang Z L, Yang S H. A multifunctional C plus epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(32): 16430–16434
CrossRef Google scholar
[40]
Hao F, Stoumpos C C, Liu Z, Chang R P H, Kanatzidis M G. Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. Journal of the American Chemical Society, 2014, 136(46): 16411–16419
CrossRef Pubmed Google scholar
[41]
Meng D L, Sun J H, Jiang S D, Zeng Y, Li Y, Yan S K, Geng J X, Huang Y. Grafting P3HT brushes on GO sheets: distinctive properties of the GO/P3HT composites due to different grafting approaches. Journal of Materials Chemistry, 2012, 22(40): 21583–21591
CrossRef Google scholar
[42]
Xiao J Y, Shi J J, Liu H B, Xu Y Z, Lv S T, Luo Y H, Li D M, Meng Q B, Li Y L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Advanced Energy Materials, 2015, 5(8): 1401943
CrossRef Google scholar
[43]
Eklund P C, Holden J M, Jishi R A. Vibrational-modes of carbon nanotubes- spectroscopy and theory. Carbon, 1995, 33(7): 959–972
CrossRef Google scholar
[44]
Yang D Q, Rochette J F, Sacher E. Spectroscopic evidence for π-π interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes. Journal of Physical Chemistry B, 2005, 109(10): 4481–4484
CrossRef Pubmed Google scholar
[45]
Rao A M, Eklund P C, Bandow S, Thess A, Smalley R E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 1997, 388(6639): 257–259
CrossRef Google scholar
[46]
D'Urso L, Forte G, Russo P, Caccamo C, Compagnini G, Puglisi O. Surface-enhanced raman scattering study on 1D–2D graphene-based structures. Carbon, 2011, 49(10): 3149–3157
CrossRef Google scholar
[47]
Chen J, Liu H, Weimer W A, Halls M D, Waldeck D H, Walker G C. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. Journal of the American Chemical Society, 2002, 124(31): 9034–9035
CrossRef Pubmed Google scholar
[48]
Jiang L Q, Gao L. Carbon nanotubes-metal nitride composites: a new class of nanocomposites with enhanced electrical properties. Journal of Materials Chemistry, 2005, 15(2): 260–266
CrossRef Google scholar
[49]
Park Y D, Lim J A, Jang Y, Hwang M, Lee H S, Lee D H, Lee H J, Baek J B, Cho K. Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors. Organic Electronics, 2008, 9(3): 317–322
CrossRef Google scholar
[50]
Dou L T, You J B, Yang J, Chen C C, He Y J, Murase S, Moriarty T, Emery K, Li G, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6(3): 180–185
CrossRef Google scholar
[51]
Irwin M D, Buchholz B, Hains A W, Chang R P H, Marks T J. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8): 2783–2787
CrossRef Google scholar
[52]
Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Gratzel M, Seok S I I. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7(6): 486–491
CrossRef Google scholar
[53]
Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson E M J. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. Journal of Physical Chemistry Letters, 2013, 4(9): 1532–1536
CrossRef Pubmed Google scholar
[54]
Ebadian S, Gholamkhass B, Shambayati S, Holdcroft S, Servati P. Effects of annealing and degradation on regioregular polythiophene-based bulk heterojunction organic photovoltaic devices. Solar Energy Materials and Solar Cells, 2010, 94(12): 2258–2264
CrossRef Google scholar
[55]
Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W. Anomalous hysteresis in perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(9): 1511–1515
CrossRef Pubmed Google scholar
[56]
Bilkay T, Schulze K, Egorov-Brening T, Bohn A, Janietz S. Copolythiophenes with hydrophilic and hydrophobic side chains: synthesis, characterization, and performance in organic field effect transistors. Macromolecular Chemistry and Physics, 2012, 213(18): 1970–1978
CrossRef Google scholar
[57]
Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414(6860): 188–190
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the HK Innovation and Technology Fund (ITS/004/14) and the HK-RGC General Research Funds (GRE No. HKUST 606511).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2195 KB)

Accesses

Citations

Detail

Sections
Recommended

/